Conquering viral drug resistance: Structural and mechanistic paradigms for antiresistance drug design

Mei Wang , Haiyong Jia , Xinyong Liu , Peng Zhan
{"title":"Conquering viral drug resistance: Structural and mechanistic paradigms for antiresistance drug design","authors":"Mei Wang ,&nbsp;Haiyong Jia ,&nbsp;Xinyong Liu ,&nbsp;Peng Zhan","doi":"10.1016/j.pscia.2025.100094","DOIUrl":null,"url":null,"abstract":"<div><div>Viral drug resistance remains a critical challenge in antiviral therapy. This perspective highlights five studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus type 1 (HIV-1), monkeypox virus (MPXV), influenza A virus (IAV), and Hepatitis B virus (HBV), revealing novel resistance mechanisms and innovative strategies. For SARS-CoV-2, GC376's flexible benzyl group overcomes nirmatrelvir resistance. HIV-1's non-nucleoside reverse transcriptase inhibitors (NNRTIs) 5i3 adapts to resistant mutants via a quinazoline scaffold, while MPXV's tecovirimat acts as a “molecular glue” stabilizing F13 dimers. Expanding these paradigms, we present groundbreaking insights: An indazole-based IAV inhibitor (compound 24) disrupts the conserved PA-PB1 heterodimer, showing sub-micromolar potency against resistant strains. For HBV, a hydrophobic tagging degrader (HyT-S7) induces HBc degradation, bypassing resistance mutations impairing traditional capsid modulators. Key strategies include dynamic flexibility, multivalent interactions, and oligomerization control, integrated with AI-driven design and real-time surveillance. This perspective bridges structural insights with translational applications, offering a roadmap for next-generation, mutation-resilient antivirals.</div></div>","PeriodicalId":101012,"journal":{"name":"Pharmaceutical Science Advances","volume":"3 ","pages":"Article 100094"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773216925000327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Viral drug resistance remains a critical challenge in antiviral therapy. This perspective highlights five studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus type 1 (HIV-1), monkeypox virus (MPXV), influenza A virus (IAV), and Hepatitis B virus (HBV), revealing novel resistance mechanisms and innovative strategies. For SARS-CoV-2, GC376's flexible benzyl group overcomes nirmatrelvir resistance. HIV-1's non-nucleoside reverse transcriptase inhibitors (NNRTIs) 5i3 adapts to resistant mutants via a quinazoline scaffold, while MPXV's tecovirimat acts as a “molecular glue” stabilizing F13 dimers. Expanding these paradigms, we present groundbreaking insights: An indazole-based IAV inhibitor (compound 24) disrupts the conserved PA-PB1 heterodimer, showing sub-micromolar potency against resistant strains. For HBV, a hydrophobic tagging degrader (HyT-S7) induces HBc degradation, bypassing resistance mutations impairing traditional capsid modulators. Key strategies include dynamic flexibility, multivalent interactions, and oligomerization control, integrated with AI-driven design and real-time surveillance. This perspective bridges structural insights with translational applications, offering a roadmap for next-generation, mutation-resilient antivirals.
征服病毒耐药性:抗耐药性药物设计的结构和机制范例
病毒耐药性仍然是抗病毒治疗的一个关键挑战。这一观点强调了五项关于严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)、人类免疫缺陷病毒1型(HIV-1)、猴痘病毒(MPXV)、甲型流感病毒(IAV)和乙型肝炎病毒(HBV)的研究,揭示了新的耐药机制和创新策略。对于SARS-CoV-2, GC376的柔性苄基克服了对尼马特瑞韦的耐药性。HIV-1的非核苷逆转录酶抑制剂(NNRTIs) 5i3通过喹唑啉支架适应耐药突变体,而MPXV的tecovirimat作为“分子胶”稳定F13二聚体。扩展这些范例,我们提出了突破性的见解:一种以茚唑为基础的IAV抑制剂(化合物24)破坏保守的PA-PB1异源二聚体,对耐药菌株表现出亚微摩尔的效力。对于HBV,疏水标记降解剂(HyT-S7)诱导HBc降解,绕过损害传统衣壳调节剂的抗性突变。关键策略包括动态灵活性、多价交互作用和寡聚化控制,并与人工智能驱动的设计和实时监控相结合。这一观点将结构见解与转化应用联系起来,为下一代抗突变抗病毒药物提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信