Three-dimensional printing of continuous carbon fibre-reinforced polylactic acid

Enyang Lu , Anyuan Jiao , Wanshun Zhang , Zhen Zhang
{"title":"Three-dimensional printing of continuous carbon fibre-reinforced polylactic acid","authors":"Enyang Lu ,&nbsp;Anyuan Jiao ,&nbsp;Wanshun Zhang ,&nbsp;Zhen Zhang","doi":"10.1016/j.smmf.2025.100099","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates how key process parameters in material extrusion (MEX, ISO/ASTM 52900) affect the flexural behaviour and interfacial performance of continuous carbon fibre-reinforced polylactic acid (PLA) composites (CFRTPCs). Continuous carbon fibre (CCF) pre-impregnated with vinyl ester resin were coextruded with molten PLA to strengthen fibre–matrix adhesion. Three-point bending tests and scanning electron microscopy (SEM) were employed to assess the effects of printing temperature, layer thickness, and hatch spacing. Reducing the layer thickness and optimising the hatch spacing improved fibre distribution and interlayer bonding, while printing temperature strongly influenced matrix flow and fibre impregnation; 230 °C provided the most favourable balance. Under the optimised conditions (230 °C, 0.3 mm layer thickness, 0.8 mm hatch spacing), the composites achieved 3.4-fold higher flexural strength and 8.1-fold higher modulus relative to neat PLA. SEM revealed cohesive fracture with minimal fibre pull-out, confirming robust interfacial bonding. Within the framework of the MEX welding model, the chosen parameter set expanded the weld-capable window (time above the glass-transition temperature (Tg) and early high-temperature exposure), thereby enhancing interlayer welding and fibre wetting. These findings highlight the importance of process optimisation and indicate that a hybrid thermoplastic–thermoset interphase improves the structural performance of continuous fibre-reinforced thermoplastic composites.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772810225000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates how key process parameters in material extrusion (MEX, ISO/ASTM 52900) affect the flexural behaviour and interfacial performance of continuous carbon fibre-reinforced polylactic acid (PLA) composites (CFRTPCs). Continuous carbon fibre (CCF) pre-impregnated with vinyl ester resin were coextruded with molten PLA to strengthen fibre–matrix adhesion. Three-point bending tests and scanning electron microscopy (SEM) were employed to assess the effects of printing temperature, layer thickness, and hatch spacing. Reducing the layer thickness and optimising the hatch spacing improved fibre distribution and interlayer bonding, while printing temperature strongly influenced matrix flow and fibre impregnation; 230 °C provided the most favourable balance. Under the optimised conditions (230 °C, 0.3 mm layer thickness, 0.8 mm hatch spacing), the composites achieved 3.4-fold higher flexural strength and 8.1-fold higher modulus relative to neat PLA. SEM revealed cohesive fracture with minimal fibre pull-out, confirming robust interfacial bonding. Within the framework of the MEX welding model, the chosen parameter set expanded the weld-capable window (time above the glass-transition temperature (Tg) and early high-temperature exposure), thereby enhancing interlayer welding and fibre wetting. These findings highlight the importance of process optimisation and indicate that a hybrid thermoplastic–thermoset interphase improves the structural performance of continuous fibre-reinforced thermoplastic composites.

Abstract Image

连续碳纤维增强聚乳酸的三维打印
本研究探讨了材料挤压中的关键工艺参数(MEX, ISO/ASTM 52900)如何影响连续碳纤维增强聚乳酸(PLA)复合材料(CFRTPCs)的弯曲行为和界面性能。用乙烯基酯树脂预浸渍连续碳纤维与熔融PLA共挤,以增强纤维基质的附着力。采用三点弯曲试验和扫描电子显微镜(SEM)来评估打印温度、层厚度和舱口间距的影响。减小层厚和优化舱口间距可以改善纤维分布和层间结合,而打印温度对基质流动和纤维浸渍有较大影响;230°C提供了最有利的平衡。在优化条件下(230°C, 0.3 mm层厚,0.8 mm舱口间距),复合材料的抗折强度比纯PLA高3.4倍,模量比纯PLA高8.1倍。扫描电镜显示,纤维拉出最小的内聚断裂,证实了坚固的界面结合。在MEX焊接模型的框架内,所选择的参数集扩大了可焊接窗口(高于玻璃化转变温度(Tg)的时间和早期高温暴露),从而增强了层间焊接和纤维润湿。这些发现强调了工艺优化的重要性,并表明混合热塑性-热固性界面改善了连续纤维增强热塑性复合材料的结构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信