Morphology-tailored nanofiber oxygen electrode enables efficiency and durability of solid oxide cells

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Peng Fu , Jiakun Sun , Wei Han , Liting Li , Liuzhen Bian , Pengyu Wei , Changyang Liu , Ju Peng , Shengli An
{"title":"Morphology-tailored nanofiber oxygen electrode enables efficiency and durability of solid oxide cells","authors":"Peng Fu ,&nbsp;Jiakun Sun ,&nbsp;Wei Han ,&nbsp;Liting Li ,&nbsp;Liuzhen Bian ,&nbsp;Pengyu Wei ,&nbsp;Changyang Liu ,&nbsp;Ju Peng ,&nbsp;Shengli An","doi":"10.1016/j.ijhydene.2025.151821","DOIUrl":null,"url":null,"abstract":"<div><div>Developing oxygen electrodes with excellent electrocatalytic activity and outstanding Sr segregation resistance remains a critical sustainability challenge for the industrial deployment of solid oxide cells (SOCs). Herein, we demonstrate a hollow (La<sub>0.6</sub>Sr<sub>0.4</sub>)<sub>0.95</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> nanofibers (LSCF-0.3) with enhanced catalytic activity for oxygen reduction/evolution reaction (ORR/OER) by electrospun method. The unique hollow morphology improves the active sites, resulting in 76 % lower polarization resistance performance (0.040 <em>vs.</em> 0.143 Ω cm<sup>2</sup> @ 750 °C). Moreover, benefited from the hollow structure, the exceptional Sr segregation resistance significantly improves the stability (0.29 % h<sup>−1</sup> <em>vs.</em> 1.74 % h<sup>−1</sup>). Electrochemical testing demonstrates superior bifunctional performance with electrolysis current density of 1.49 A cm<sup>−2</sup>@1.6 V and peak power density of 1.22 W cm<sup>−2</sup> @0.75V at 750 °C. Finally, the LSCF-0.3 oxygen electrode exhibits remarkably long-term stability in both fuel cell and electrolysis modes. Our work establishes electrospinning-enabled morphology control as a green manufacturing paradigm for durable energy conversion devices.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"181 ","pages":"Article 151821"},"PeriodicalIF":8.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925048244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing oxygen electrodes with excellent electrocatalytic activity and outstanding Sr segregation resistance remains a critical sustainability challenge for the industrial deployment of solid oxide cells (SOCs). Herein, we demonstrate a hollow (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ nanofibers (LSCF-0.3) with enhanced catalytic activity for oxygen reduction/evolution reaction (ORR/OER) by electrospun method. The unique hollow morphology improves the active sites, resulting in 76 % lower polarization resistance performance (0.040 vs. 0.143 Ω cm2 @ 750 °C). Moreover, benefited from the hollow structure, the exceptional Sr segregation resistance significantly improves the stability (0.29 % h−1 vs. 1.74 % h−1). Electrochemical testing demonstrates superior bifunctional performance with electrolysis current density of 1.49 A cm−2@1.6 V and peak power density of 1.22 W cm−2 @0.75V at 750 °C. Finally, the LSCF-0.3 oxygen electrode exhibits remarkably long-term stability in both fuel cell and electrolysis modes. Our work establishes electrospinning-enabled morphology control as a green manufacturing paradigm for durable energy conversion devices.
纳米纤维氧电极使固体氧化物电池的效率和耐用性得以提高
开发具有优异电催化活性和优异抗Sr偏析性能的氧电极仍然是固体氧化物电池(soc)工业部署的关键挑战。本文用静电纺丝法制备了一种中空(La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ纳米纤维(LSCF-0.3),该纤维具有较强的氧还原/析出反应(ORR/OER)催化活性。独特的空心形貌改善了活性位点,导致极化电阻性能降低76% (0.040 vs. 0.143 Ω cm2 @ 750°C)。此外,得益于中空结构,优异的抗Sr偏析性能显著提高了稳定性(0.29% h−1 vs. 1.74% h−1)。电化学测试表明,750℃电解电流密度为1.49 A cm−2@1.6 V,峰值功率密度为1.22 W cm−2 @0.75V,具有优异的双功能性能。最后,LSCF-0.3氧电极在燃料电池和电解模式下均表现出显著的长期稳定性。我们的工作建立了电纺丝使形态控制作为一个绿色制造范式的耐用的能量转换装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信