Strength-ductility trade-off in high-Mg aluminum alloys via Y/Gd-induced heterogeneous microstructure

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mao Peng , Yanjun Zhao , Feng Wei , Jinyu Long , Haoxiang Yang , Deyang Lu , Yang Zeng , Yan Zhao , Nengwen Li
{"title":"Strength-ductility trade-off in high-Mg aluminum alloys via Y/Gd-induced heterogeneous microstructure","authors":"Mao Peng ,&nbsp;Yanjun Zhao ,&nbsp;Feng Wei ,&nbsp;Jinyu Long ,&nbsp;Haoxiang Yang ,&nbsp;Deyang Lu ,&nbsp;Yang Zeng ,&nbsp;Yan Zhao ,&nbsp;Nengwen Li","doi":"10.1016/j.msea.2025.149182","DOIUrl":null,"url":null,"abstract":"<div><div>When the Mg-content in 5-series aluminum alloys is ≥ 5 wt%, ductility significantly decreases despite a notable increase in strength. To address this issue, we added 0.18 wt% Y and 0.35 wt% Gd to Al-8.2Mg-0.5Mn alloys and investigated the alterations in their microstructure and properties after homogenization, hot/cold rolling, and annealing. This process introduces numerous fine Mn<sub>2</sub>Gd phases (30–400 nm) uniformly distributed within the alloy, alongside a coarse Al<sub>8</sub>Mn<sub>4</sub>(Gd, Y) phase (1–50 μm). Both phases contribute to forming a heterogeneous grain structure, resulting in a high strength and ductility after a short-duration annealing period of 10 min at 430 °C (UTS ⁓479 MPa, EL⁓21.9 %). The excellent synergy between strength and ductility after short-duration annealing can be attributed to the high solute Mg content, the diffusely distributed fine second phase and grain refinement. In addition, its excellent ductility is also closely related to the high proportion of recrystallized grains (89.3 %) and the heterogeneous grain structure. This paper provides a feasible method to break the synergy between strength and ductility in high-magnesium aluminum alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"947 ","pages":"Article 149182"},"PeriodicalIF":7.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325014066","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When the Mg-content in 5-series aluminum alloys is ≥ 5 wt%, ductility significantly decreases despite a notable increase in strength. To address this issue, we added 0.18 wt% Y and 0.35 wt% Gd to Al-8.2Mg-0.5Mn alloys and investigated the alterations in their microstructure and properties after homogenization, hot/cold rolling, and annealing. This process introduces numerous fine Mn2Gd phases (30–400 nm) uniformly distributed within the alloy, alongside a coarse Al8Mn4(Gd, Y) phase (1–50 μm). Both phases contribute to forming a heterogeneous grain structure, resulting in a high strength and ductility after a short-duration annealing period of 10 min at 430 °C (UTS ⁓479 MPa, EL⁓21.9 %). The excellent synergy between strength and ductility after short-duration annealing can be attributed to the high solute Mg content, the diffusely distributed fine second phase and grain refinement. In addition, its excellent ductility is also closely related to the high proportion of recrystallized grains (89.3 %) and the heterogeneous grain structure. This paper provides a feasible method to break the synergy between strength and ductility in high-magnesium aluminum alloys.
高镁铝合金在Y/ gd诱导非均相组织中的强度-延性权衡
5系铝合金中mg含量≥5wt %时,塑性显著降低,强度显著提高。为了解决这一问题,我们在Al-8.2Mg-0.5Mn合金中添加了0.18 wt% Y和0.35 wt% Gd,并研究了均匀化、冷轧和退火后其组织和性能的变化。该工艺引入了许多细小的Mn2Gd相(30-400 nm),均匀分布在合金内部,同时还引入了粗糙的Al8Mn4(Gd, Y)相(1-50 μm)。在430°C (UTS⁓479 MPa, EL⁓21.9%)下,经过10分钟的短时间退火后,这两种相都有助于形成非均质晶粒组织,从而获得高强度和高塑性。高溶质Mg含量、扩散分布的细小第二相和晶粒细化是短时间退火后合金强度和塑性之间良好协同作用的主要原因。此外,其优异的延展性也与较高的再结晶晶粒比例(89.3%)和非均匀晶粒组织密切相关。本文为打破高镁铝合金强度与塑性的协同作用提供了可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信