An investigation of static, dynamic, and extreme dynamic strain rate properties in binder jetting tungsten heavy alloys

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Xue , Kai-yang Wang , Peng Xiao , Ding-xuan Zhou , Tong Zhou , Tao Wang , Guang-yan Huang
{"title":"An investigation of static, dynamic, and extreme dynamic strain rate properties in binder jetting tungsten heavy alloys","authors":"Hao Xue ,&nbsp;Kai-yang Wang ,&nbsp;Peng Xiao ,&nbsp;Ding-xuan Zhou ,&nbsp;Tong Zhou ,&nbsp;Tao Wang ,&nbsp;Guang-yan Huang","doi":"10.1016/j.msea.2025.149192","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the mechanical properties and failure mechanisms of tungsten heavy alloys (WHAs) fabricated via binder jetting (BJT)—an indirect additive manufacturing technique—versus conventional liquid-phase sintering (LPS) across wide strain-rate regimes. A 93W-5Ni-2Fe alloy printed by BJT with subsequent heat treatment exhibits a microstructure of W particles within a Ni-Fe binder phase. BJT-processed WHAs demonstrate approximately doubled W particle size and marginally higher W-W contiguity (<em>C</em><sub>W-W</sub>≈0.307) than LPS counterparts (<em>C</em><sub>W-W</sub>≈0.291). Quasi-static tensile tests reveal 17.3 % and 4.8 % higher yield and tensile strength for BJT WHAs relative to LPS, yet reduced elongation (24.5 % vs. 39.0 %). The dominant fracture mode transitions from ductile (LPS) to mixed brittle-ductile in BJT, characterized by tungsten cleavage (\"river patterns\") and binder-phase dimples. Dynamic compression (1000–5000 s<sup>−1</sup>) indicates lower compressive strength and strain-rate sensitivity in BJT WHAs. Ballistic evaluations confirm comparable penetration performance (within 3 %) between BJT and LPS long-rod penetrators under extreme conditions. Residual penetrator analysis identifies penetration failure mechanisms: mushroom-head segmentation via structural-design-induced macrocracks and adiabatic shear band (ASB)-derived microcracks. This work establishes a foundation for BJT WHAs in the field of impact dynamics.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"947 ","pages":"Article 149192"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325014169","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the mechanical properties and failure mechanisms of tungsten heavy alloys (WHAs) fabricated via binder jetting (BJT)—an indirect additive manufacturing technique—versus conventional liquid-phase sintering (LPS) across wide strain-rate regimes. A 93W-5Ni-2Fe alloy printed by BJT with subsequent heat treatment exhibits a microstructure of W particles within a Ni-Fe binder phase. BJT-processed WHAs demonstrate approximately doubled W particle size and marginally higher W-W contiguity (CW-W≈0.307) than LPS counterparts (CW-W≈0.291). Quasi-static tensile tests reveal 17.3 % and 4.8 % higher yield and tensile strength for BJT WHAs relative to LPS, yet reduced elongation (24.5 % vs. 39.0 %). The dominant fracture mode transitions from ductile (LPS) to mixed brittle-ductile in BJT, characterized by tungsten cleavage ("river patterns") and binder-phase dimples. Dynamic compression (1000–5000 s−1) indicates lower compressive strength and strain-rate sensitivity in BJT WHAs. Ballistic evaluations confirm comparable penetration performance (within 3 %) between BJT and LPS long-rod penetrators under extreme conditions. Residual penetrator analysis identifies penetration failure mechanisms: mushroom-head segmentation via structural-design-induced macrocracks and adiabatic shear band (ASB)-derived microcracks. This work establishes a foundation for BJT WHAs in the field of impact dynamics.
结合剂喷射钨重合金的静态、动态和极端动态应变速率特性研究
本研究探讨了通过粘结剂喷射(BJT) -一种间接增材制造技术-与传统液相烧结(LPS)在宽应变速率下制备的重钨合金(WHAs)的力学性能和失效机制。BJT打印的93W-5Ni-2Fe合金经后续热处理后,呈现出Ni-Fe结合相内W颗粒的微观结构。bjt处理的水合蛋白的W粒度约为LPS处理水合蛋白的两倍,W-W连续度(CW-W≈0.307)略高于LPS处理水合蛋白(CW-W≈0.291)。准静态拉伸试验显示,与LPS相比,BJT WHAs的屈服强度和抗拉强度分别提高了17.3%和4.8%,但伸长率却降低了(24.5%比39.0%)。BJT的主要断裂模式由延性断裂(LPS)向脆性-延性混合断裂转变,主要表现为钨解理(“河流模式”)和结合相韧窝。动态压缩(1000 ~ 5000 s−1)表明BJT复合材料的抗压强度和应变率敏感性较低。弹道评估证实,在极端条件下,BJT和LPS长杆穿孔弹的侵彻性能相当(在3%以内)。残余穿透体分析确定了穿透破坏机制:由结构设计引起的宏观裂纹和绝热剪切带(ASB)衍生的微裂纹引起的蘑菇头分割。本工作为BJT - was在冲击动力学领域的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信