Strain rate and temperature effects on dynamic behavior of LPBF-GH3230 superalloy

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yulin Qin , Wanqi Wu , Ningrui Wang , Wenhao Liu , Xiaoyi Wang , Hao Deng , Xiaochong Liang , Ling Wang , Shilei Li , Qungang Kong , Kai Sheng , Longqing Chen , Jun Zhu , Ming Yin
{"title":"Strain rate and temperature effects on dynamic behavior of LPBF-GH3230 superalloy","authors":"Yulin Qin ,&nbsp;Wanqi Wu ,&nbsp;Ningrui Wang ,&nbsp;Wenhao Liu ,&nbsp;Xiaoyi Wang ,&nbsp;Hao Deng ,&nbsp;Xiaochong Liang ,&nbsp;Ling Wang ,&nbsp;Shilei Li ,&nbsp;Qungang Kong ,&nbsp;Kai Sheng ,&nbsp;Longqing Chen ,&nbsp;Jun Zhu ,&nbsp;Ming Yin","doi":"10.1016/j.msea.2025.149195","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dynamic compression behavior of laser powder bed fusion (LPBF)-processed Ni-based superalloy GH3230 across a wide range of strain rates (1482 - 6893 s<sup>−1</sup>) and temperatures (-150 - 750 °C) using a Split Hopkinson Pressure Bar (SHPB) system. The mechanical test results revealed that as the strain rate increased from 1482 s<sup>−1</sup> to 6893 s<sup>−1</sup>, the peak true stress increased from 895 MPa to 1853 MPa, with an increase of 107 %, exhibiting a significant strain rate strengthening effect. This phenomenon is mainly attributed to the enhanced dislocation interactions and reduced dynamic recovery capacity. Microstructural analysis demonstrates that increasing the strain rate promotes a transition from columnar to equiaxed grain morphology through dynamic recrystallization and grain fragmentation, reducing the average grain size from 35.7 μm to 2.36 μm. In contrast, temperature exerts a weaker influence on grain evolution: while thermal softening decreases peak stress at elevated temperatures, recrystallized fractions remain below 5 % across all tested temperatures due to the short deformation time in SHPB tests. EBSD-based texture analysis showed strain rate-induced weakening of the initial &lt;001&gt;//build direction (BD) texture and gradual orientation homogenization, accompanied by increased dislocation density and intragranular misorientation. These findings underscore the dominant role of strain rate in governing both the mechanical response and microstructural evolution, whereas temperature primarily affects deformation resistance through thermal activation.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"947 ","pages":"Article 149195"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325014194","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the dynamic compression behavior of laser powder bed fusion (LPBF)-processed Ni-based superalloy GH3230 across a wide range of strain rates (1482 - 6893 s−1) and temperatures (-150 - 750 °C) using a Split Hopkinson Pressure Bar (SHPB) system. The mechanical test results revealed that as the strain rate increased from 1482 s−1 to 6893 s−1, the peak true stress increased from 895 MPa to 1853 MPa, with an increase of 107 %, exhibiting a significant strain rate strengthening effect. This phenomenon is mainly attributed to the enhanced dislocation interactions and reduced dynamic recovery capacity. Microstructural analysis demonstrates that increasing the strain rate promotes a transition from columnar to equiaxed grain morphology through dynamic recrystallization and grain fragmentation, reducing the average grain size from 35.7 μm to 2.36 μm. In contrast, temperature exerts a weaker influence on grain evolution: while thermal softening decreases peak stress at elevated temperatures, recrystallized fractions remain below 5 % across all tested temperatures due to the short deformation time in SHPB tests. EBSD-based texture analysis showed strain rate-induced weakening of the initial <001>//build direction (BD) texture and gradual orientation homogenization, accompanied by increased dislocation density and intragranular misorientation. These findings underscore the dominant role of strain rate in governing both the mechanical response and microstructural evolution, whereas temperature primarily affects deformation resistance through thermal activation.
应变速率和温度对LPBF-GH3230高温合金动态行为的影响
本研究利用分离式霍普金森压力杆(SHPB)系统,研究了激光粉末床熔合(LPBF)加工的ni基高温合金GH3230在应变速率(1482 - 6893 s−1)和温度(-150 - 750℃)范围内的动态压缩行为。力学试验结果表明,当应变速率从1482 s−1增加到6893 s−1时,峰值真应力从895 MPa增加到1853 MPa,增加了107%,表现出明显的应变速率强化效果。这种现象的主要原因是位错相互作用增强,动态恢复能力降低。显微组织分析表明,提高应变速率可通过动态再结晶和晶粒碎裂促进晶粒形貌从柱状向等轴状转变,平均晶粒尺寸从35.7 μm减小到2.36 μm。相比之下,温度对晶粒演化的影响较弱:在高温下,热软化降低了峰值应力,由于SHPB试验中的变形时间短,在所有测试温度下,再结晶分数都保持在5%以下。基于ebsd的织构分析显示,应变速率导致初始<;001>;//构建方向(BD)织构减弱,取向逐渐均匀化,同时伴有位错密度增加和晶内取向错误。这些发现强调了应变速率在控制力学响应和微观组织演变方面的主导作用,而温度主要通过热激活影响变形阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信