Achieving excellent strength-ductility synergy in TWIP-assisted Fe25CoxCr25Ni50-x high-entropy alloys via Co/Ni ratio and stacking fault energy manipulation

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liang Liu , Lei Tang , Shaoxu Huang , Lu Liu , Linfeng Ji , Guofu Xu
{"title":"Achieving excellent strength-ductility synergy in TWIP-assisted Fe25CoxCr25Ni50-x high-entropy alloys via Co/Ni ratio and stacking fault energy manipulation","authors":"Liang Liu ,&nbsp;Lei Tang ,&nbsp;Shaoxu Huang ,&nbsp;Lu Liu ,&nbsp;Linfeng Ji ,&nbsp;Guofu Xu","doi":"10.1016/j.msea.2025.149180","DOIUrl":null,"url":null,"abstract":"<div><div>FeCoCrNi high-entropy alloys frequently suffer from inadequate room-temperature strength, which imposes limitations on structural applications. By manipulating the Co/Ni ratio, a non-equimolar Fe<sub>25</sub>Co<sub>30</sub>Cr<sub>25</sub>Ni<sub>20</sub> alloy was designed with simultaneously enhanced yield strength (increase by 24 %, to 431 MPa), ultimate tensile strength (increase by 29 %, to 832 MPa), and ductility (increase by 27 %, to 62 % elongation) compared to a lower Co/Ni ratio counterpart. This breakthrough can be attributed to the Co/Ni-induced reduction in stacking fault energy (SFE), which was quantitatively determined though thermodynamic model (from ∼42.6 mJ/m<sup>2</sup> to ∼17.0 mJ/m<sup>2</sup>) and X-ray diffraction line profile analysis (from ∼24.25 mJ/m<sup>2</sup> to ∼14.56 mJ/m<sup>2</sup>). The lowered SFE promoted a 38.8 % annealing twin area fraction and intensified deformation twin fraction, synergistically enhancing strain hardening behaviors. Quantitative strengthening analysis confirms the synergy of Hall-Petch strengthening from a refined effective grain size of 3.9 μm and dislocation strengthening from an initial density of 5.9 × 10<sup>13</sup> m<sup>−2</sup>, aligning well with experimental measurements. This work establishes a Co/Ni ratio mediated SFE design strategy for developing multicomponent alloys with remarkable strength-ductility combinations.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"947 ","pages":"Article 149180"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325014042","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

FeCoCrNi high-entropy alloys frequently suffer from inadequate room-temperature strength, which imposes limitations on structural applications. By manipulating the Co/Ni ratio, a non-equimolar Fe25Co30Cr25Ni20 alloy was designed with simultaneously enhanced yield strength (increase by 24 %, to 431 MPa), ultimate tensile strength (increase by 29 %, to 832 MPa), and ductility (increase by 27 %, to 62 % elongation) compared to a lower Co/Ni ratio counterpart. This breakthrough can be attributed to the Co/Ni-induced reduction in stacking fault energy (SFE), which was quantitatively determined though thermodynamic model (from ∼42.6 mJ/m2 to ∼17.0 mJ/m2) and X-ray diffraction line profile analysis (from ∼24.25 mJ/m2 to ∼14.56 mJ/m2). The lowered SFE promoted a 38.8 % annealing twin area fraction and intensified deformation twin fraction, synergistically enhancing strain hardening behaviors. Quantitative strengthening analysis confirms the synergy of Hall-Petch strengthening from a refined effective grain size of 3.9 μm and dislocation strengthening from an initial density of 5.9 × 1013 m−2, aligning well with experimental measurements. This work establishes a Co/Ni ratio mediated SFE design strategy for developing multicomponent alloys with remarkable strength-ductility combinations.
通过Co/Ni比和层错能调控,实现twip辅助Fe25CoxCr25Ni50-x高熵合金优异的强度-塑性协同效应
feccrni高熵合金的室温强度往往不足,这限制了其在结构上的应用。通过控制Co/Ni比,设计出非等摩尔Fe25Co30Cr25Ni20合金,与Co/Ni比较低的合金相比,其屈服强度(提高24%,达到431 MPa),极限抗拉强度(提高29%,达到832 MPa)和延展性(提高27%,达到62%伸长率)同时提高。这一突破可归因于Co/ ni诱导的层错能(SFE)的降低,通过热力学模型(从~ 42.6 mJ/m2到~ 17.0 mJ/m2)和x射线衍射线剖面分析(从~ 24.25 mJ/m2到~ 14.56 mJ/m2)定量确定。降低SFE后,退火孪晶面积分数提高了38.8%,变形孪晶面积分数提高了38.8%,强化了应变硬化行为。定量强化分析证实了细化有效晶粒尺寸为3.9 μm时的Hall-Petch强化和初始密度为5.9 × 1013 m−2时的位错强化的协同作用,与实验结果吻合良好。本工作建立了Co/Ni比率为中介的SFE设计策略,用于开发具有显著强度-塑性组合的多组分合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信