Predicting local buckling in steel members under cyclic loads: A strain-based approach using the CSM

IF 6.4 1区 工程技术 Q1 ENGINEERING, CIVIL
Yu Chen , Christian Málaga-Chuquitaype , Feng Zhou , Leroy Gardner
{"title":"Predicting local buckling in steel members under cyclic loads: A strain-based approach using the CSM","authors":"Yu Chen ,&nbsp;Christian Málaga-Chuquitaype ,&nbsp;Feng Zhou ,&nbsp;Leroy Gardner","doi":"10.1016/j.engstruct.2025.121473","DOIUrl":null,"url":null,"abstract":"<div><div>A new approach, based on the Continuous Strength Method (CSM), is presented for the prediction of cross-section failure through inelastic local buckling in steel members under cyclic loading. Cross-section local buckling failure is predicted to occur when a prescribed strain limit is reached; the effect of loading history is accounted for by considering the cumulative strain from each loading cycle. The strain limit is related to the cross-section slenderness, which is based on the local buckling behaviour of the full cross-section, rather than the individual plate width-to-thickness ratios, making it suitable for different section profiles (e.g., hollow sections and I-sections). Finite element models are established, validated and used to conduct parametric studies, covering a series of steel grades, a wide range of cross-section slendernesses and various cyclic axial loading protocols. The resulting numerical data sets are employed to develop a means of rationally considering the contribution of both the compressive and tensile strain ranges in each loading cycle to cross-section failure. The suitability of the newly proposed method is verified against experimental results on beam-columns with hollow sections and I-sections under cyclic loading, as well as numerical results. The findings indicate that the cumulative deformation capacity and local buckling failure of steel cross-sections can be accurately predicted using the developed strain-based design method. The method can be applied in the inelastic analysis of structures under seismic loading and in the seismic design of steel cross-sections.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"345 ","pages":"Article 121473"},"PeriodicalIF":6.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625018644","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A new approach, based on the Continuous Strength Method (CSM), is presented for the prediction of cross-section failure through inelastic local buckling in steel members under cyclic loading. Cross-section local buckling failure is predicted to occur when a prescribed strain limit is reached; the effect of loading history is accounted for by considering the cumulative strain from each loading cycle. The strain limit is related to the cross-section slenderness, which is based on the local buckling behaviour of the full cross-section, rather than the individual plate width-to-thickness ratios, making it suitable for different section profiles (e.g., hollow sections and I-sections). Finite element models are established, validated and used to conduct parametric studies, covering a series of steel grades, a wide range of cross-section slendernesses and various cyclic axial loading protocols. The resulting numerical data sets are employed to develop a means of rationally considering the contribution of both the compressive and tensile strain ranges in each loading cycle to cross-section failure. The suitability of the newly proposed method is verified against experimental results on beam-columns with hollow sections and I-sections under cyclic loading, as well as numerical results. The findings indicate that the cumulative deformation capacity and local buckling failure of steel cross-sections can be accurately predicted using the developed strain-based design method. The method can be applied in the inelastic analysis of structures under seismic loading and in the seismic design of steel cross-sections.
循环荷载作用下钢构件局部屈曲预测:基于应变的CSM方法
基于连续强度法(CSM),提出了一种预测循环荷载作用下钢构件非弹性局部屈曲截面破坏的新方法。预测截面局部屈曲破坏发生在达到规定的应变极限时;通过考虑每个加载周期的累积应变来考虑加载历史的影响。应变极限与截面长细比有关,这是基于整个截面的局部屈曲行为,而不是单个板的宽厚比,使其适用于不同的截面轮廓(例如,空心截面和i型截面)。建立、验证并使用有限元模型进行参数化研究,涵盖一系列钢种、大范围的横截面细长度和各种循环轴向加载协议。所得到的数值数据集用于开发一种合理考虑每个加载周期中压缩应变和拉伸应变范围对截面破坏的贡献的方法。通过循环荷载作用下空心截面和工字形截面梁柱的试验结果和数值计算结果,验证了新方法的适用性。研究结果表明,基于应变的设计方法可以准确预测钢截面的累积变形能力和局部屈曲破坏。该方法可用于地震荷载作用下结构的非弹性分析和钢截面的抗震设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信