Gate-tunable dendritic integration and linear classification in a chitosan-lactalbumin protonic synaptic transistor

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL
Gexun Qin , Yanmei Sun , Xuelin Sun
{"title":"Gate-tunable dendritic integration and linear classification in a chitosan-lactalbumin protonic synaptic transistor","authors":"Gexun Qin ,&nbsp;Yanmei Sun ,&nbsp;Xuelin Sun","doi":"10.1016/j.colsurfa.2025.138516","DOIUrl":null,"url":null,"abstract":"<div><div>The development of bio-inspired electronic devices capable of emulating synaptic functions and reconfigurable logic operations holds significant promise for advancing neuromorphic computing and energy-efficient systems. This study presents a chitosan-lactalbumin proton-gated transistor with a multi-gate architecture, demonstrating synaptic-mimetic and logic-inverter functionalities. The device leverages chitosan’s proton-conducting properties (σ ≈ 2.72 ×10⁻⁵ S·cm⁻¹) and lactalbumin’s field-responsive conductivity to achieve n-type transistor behavior, exhibiting high carrier mobility (84.57 cm²/V·s), a steep subthreshold swing (58.61 mV/dec), and a significant on/off ratio (5.11 ×10<sup>4</sup>). Atomic force microscopy and FTIR spectroscopy confirmed the structural integrity of the films, while electrochemical impedance spectroscopy validated proton transport dynamics. The transistor’s hysteresis, attributed to mobile protons (∼6.9 ×10 ¹² cm⁻²), enabled memory effects and Schmitt-triggered inverter operation with noise resilience. Dendritic-like nonlinear integration was achieved through multi-gate modulation, with EPSC responses transitioning from sublinear to super-linear via gate/drain voltage control. This work establishes a versatile platform for bio-inspired electronics, combining protonic modulation with reconfigurable logic and neuromorphic computing capabilities.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"728 ","pages":"Article 138516"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725024203","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of bio-inspired electronic devices capable of emulating synaptic functions and reconfigurable logic operations holds significant promise for advancing neuromorphic computing and energy-efficient systems. This study presents a chitosan-lactalbumin proton-gated transistor with a multi-gate architecture, demonstrating synaptic-mimetic and logic-inverter functionalities. The device leverages chitosan’s proton-conducting properties (σ ≈ 2.72 ×10⁻⁵ S·cm⁻¹) and lactalbumin’s field-responsive conductivity to achieve n-type transistor behavior, exhibiting high carrier mobility (84.57 cm²/V·s), a steep subthreshold swing (58.61 mV/dec), and a significant on/off ratio (5.11 ×104). Atomic force microscopy and FTIR spectroscopy confirmed the structural integrity of the films, while electrochemical impedance spectroscopy validated proton transport dynamics. The transistor’s hysteresis, attributed to mobile protons (∼6.9 ×10 ¹² cm⁻²), enabled memory effects and Schmitt-triggered inverter operation with noise resilience. Dendritic-like nonlinear integration was achieved through multi-gate modulation, with EPSC responses transitioning from sublinear to super-linear via gate/drain voltage control. This work establishes a versatile platform for bio-inspired electronics, combining protonic modulation with reconfigurable logic and neuromorphic computing capabilities.
壳聚糖-乳清蛋白质子突触晶体管的栅极可调树突集成与线性分类
仿生电子设备的发展能够模拟突触功能和可重构逻辑操作,为推进神经形态计算和节能系统提供了重要的希望。本研究提出了一种壳聚糖-乳清蛋白质子门控晶体管,具有多栅极结构,展示了突触模拟和逻辑逆变功能。该器件利用壳聚糖的质子传导特性(σ≈2.72 ×10⁻- 5 S·cm⁻¹)和乳白蛋白的场响应电导率来实现n型晶体管的行为,表现出高载流子迁移率(84.57 cm²/V·S),陡的亚阈值振荡(58.61 mV/dec)和显著的开/关比(5.11 ×104)。原子力显微镜和红外光谱证实了膜的结构完整性,而电化学阻抗谱证实了质子输运动力学。晶体管的迟滞,归因于移动质子(~ 6.9 ×10 ¹²cm⁻²),实现了记忆效应和施密特触发的具有噪声弹性的逆变器操作。通过多栅极调制实现树突状非线性积分,并通过栅极/漏极电压控制使EPSC响应从亚线性过渡到超线性。这项工作为生物启发电子学建立了一个多功能平台,将质子调制与可重构逻辑和神经形态计算能力相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信