Bi-Sn bimetallic catalysts for efficient electrocatalytic nitrogen reduction to ammonia

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Jinwang Li , Jianglin Tu , Zhefei Pan , Liang An , Rong Chen
{"title":"Bi-Sn bimetallic catalysts for efficient electrocatalytic nitrogen reduction to ammonia","authors":"Jinwang Li ,&nbsp;Jianglin Tu ,&nbsp;Zhefei Pan ,&nbsp;Liang An ,&nbsp;Rong Chen","doi":"10.1016/j.jpowsour.2025.238483","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient electrocatalysts for sustainable ammonia synthesis via the nitrogen reduction reaction remains a critical challenge due to the inherent stability of N ≡ N bonds and competing hydrogen evolution reaction. Herein, we present a bimetallic Bi-Sn catalyst synthesized through galvanic replacement and electrodeposition, demonstrating enhanced nitrogen reduction performance under ambient conditions. The optimized Bi-Sn catalyst achieves an ammonia yield of 17.09 μg h<sup>−1</sup>·mg<sub>cat</sub><sup>−1</sup> with a Faradaic efficiency of 5.37 % at −0.4 V vs. reversible hydrogen electrode, representing an obvious improvement over pristine Bi. Comprehensive characterization reveals that Sn nanoparticles are uniformly decorated on the Bi surfaces, increasing the electrochemical surface area while enhancing electrode conductivity. Theoretical calculations elucidate the synergistic mechanism: Sn modulates the Bi 6p band center, reducing the energy barrier for the rate-determining step of ∗N<sub>2</sub> → ∗NNH by 16.9 % (ΔG = 1.72 eV vs. 2.07 eV for Bi) and enhancing nitrogen adsorption (0.20 eV vs. 0.28 eV). This work establishes an integrated strategy of structural engineering and electronic modulation for designing bimetallic catalysts, advancing sustainable ammonia synthesis.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"660 ","pages":"Article 238483"},"PeriodicalIF":7.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325023195","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient electrocatalysts for sustainable ammonia synthesis via the nitrogen reduction reaction remains a critical challenge due to the inherent stability of N ≡ N bonds and competing hydrogen evolution reaction. Herein, we present a bimetallic Bi-Sn catalyst synthesized through galvanic replacement and electrodeposition, demonstrating enhanced nitrogen reduction performance under ambient conditions. The optimized Bi-Sn catalyst achieves an ammonia yield of 17.09 μg h−1·mgcat−1 with a Faradaic efficiency of 5.37 % at −0.4 V vs. reversible hydrogen electrode, representing an obvious improvement over pristine Bi. Comprehensive characterization reveals that Sn nanoparticles are uniformly decorated on the Bi surfaces, increasing the electrochemical surface area while enhancing electrode conductivity. Theoretical calculations elucidate the synergistic mechanism: Sn modulates the Bi 6p band center, reducing the energy barrier for the rate-determining step of ∗N2 → ∗NNH by 16.9 % (ΔG = 1.72 eV vs. 2.07 eV for Bi) and enhancing nitrogen adsorption (0.20 eV vs. 0.28 eV). This work establishes an integrated strategy of structural engineering and electronic modulation for designing bimetallic catalysts, advancing sustainable ammonia synthesis.
高效电催化氮还原制氨的铋锡双金属催化剂
由于N≡N键的固有稳定性和相互竞争的析氢反应,开发高效的电催化剂用于通过氮还原反应持续合成氨仍然是一个关键的挑战。本文提出了一种通过电替换和电沉积合成的双金属Bi-Sn催化剂,在环境条件下表现出增强的氮还原性能。优化后的Bi- sn催化剂与可逆氢电极相比,在−0.4 V下的氨收率为17.09 μg h−1·mgcat−1,法拉第效率为5.37%,比原始Bi有明显提高。综合表征表明,锡纳米粒子均匀地修饰在铋表面,增加了电化学表面积,同时提高了电极的导电性。理论计算阐明了协同作用机制:Sn调节Bi 6p带中心,使决定速率步骤的能量势阱降低16.9% (ΔG = 1.72 eV vs. 2.07 eV),并增强氮的吸附(0.20 eV vs. 0.28 eV)。本研究建立了结构工程与电子调制相结合的双金属催化剂设计策略,促进可持续氨合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信