Selective cation substitution electrodialysis enables direct production of high-purity magnesium aspartate: quantification of ion transport

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zhihao Tian , Rui Li , Xixi Ma , Xiaoyun Liu , Jiaming Ji , Jie Qian , Jinfeng He , Weiwei Li , Xiaocheng Lin , Chuanrun Li , Haiyang Yan
{"title":"Selective cation substitution electrodialysis enables direct production of high-purity magnesium aspartate: quantification of ion transport","authors":"Zhihao Tian ,&nbsp;Rui Li ,&nbsp;Xixi Ma ,&nbsp;Xiaoyun Liu ,&nbsp;Jiaming Ji ,&nbsp;Jie Qian ,&nbsp;Jinfeng He ,&nbsp;Weiwei Li ,&nbsp;Xiaocheng Lin ,&nbsp;Chuanrun Li ,&nbsp;Haiyang Yan","doi":"10.1016/j.memsci.2025.124763","DOIUrl":null,"url":null,"abstract":"<div><div>Direct production of high-purity amino acid salts offers an efficient and sustainable solution to reduce fresh acid/base consumption and wastewater generation. In this study, we specifically designed a selective cation substitution electrodialysis (SCS-ED) with a novel configuration to enable the direct production of high-purity magnesium <span>l</span>-aspartate (<span><math><mrow><mtext>Asp</mtext><mo>‐</mo><mtext>Mg</mtext></mrow></math></span>) from monoammonium <span>l</span>-aspartate. To achieve this, we firstly established an ion transport model to quantify the ion transport including the competitive migration of <span><math><mrow><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup></mrow></math></span> and <span><math><mrow><msup><mtext>Mg</mtext><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></math></span> through the selective cation exchange membrane, and the co-ion transport of <span><math><mrow><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup></mrow></math></span> through the anion exchange membrane. Then, effects of various parameters including stack voltage, feed concentration, and feed velocity on the ion transport as well as SCS-ED performance were investigated comprehensively. Results indicate that decreasing stack voltage acts as a significant role in obtaining a high selectivity (<span><math><mrow><msubsup><mi>S</mi><msup><mrow><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mn>4</mn><mo>+</mo></msubsup><mo>/</mo><mi>M</mi><mi>g</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mrow><mi>S</mi><mi>C</mi><mi>S</mi><mo>−</mo><mi>E</mi><mi>D</mi></mrow></msubsup></mrow></math></span>) and high purity (<span><math><mrow><msub><mi>P</mi><mrow><mi>A</mi><mi>s</mi><mi>p</mi><mo>−</mo><mi>M</mi><mi>g</mi></mrow></msub></mrow></math></span>), decreasing feed concentration acts as a significant role in obtaining a high current efficiency (<span><math><mrow><msubsup><mi>η</mi><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mn>4</mn><mo>+</mo></msubsup><msup><mrow><mi>S</mi><mi>C</mi><mi>E</mi><mi>M</mi></mrow><mo>′</mo></msup></msubsup></mrow></math></span>) and <span><math><mrow><msubsup><mi>S</mi><msup><mrow><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mn>4</mn><mo>+</mo></msubsup><mo>/</mo><mi>M</mi><mi>g</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mrow><mi>S</mi><mi>C</mi><mi>S</mi><mo>−</mo><mi>E</mi><mi>D</mi></mrow></msubsup></mrow></math></span>, and increasing feed velocity acts as an important role in obtaining a relatively low total coat. Overall, considering the high <span><math><mrow><msub><mi>P</mi><mrow><mi>A</mi><mi>s</mi><mi>p</mi><mo>−</mo><mi>M</mi><mi>g</mi></mrow></msub></mrow></math></span> for pharmaceutical application, a high <span><math><mrow><msubsup><mi>S</mi><msup><mrow><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mn>4</mn><mo>+</mo></msubsup><mo>/</mo><mi>M</mi><mi>g</mi></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup><mrow><mi>S</mi><mi>C</mi><mi>S</mi><mo>−</mo><mi>E</mi><mi>D</mi></mrow></msubsup></mrow></math></span> (32), <span><math><mrow><msub><mi>P</mi><mrow><mi>A</mi><mi>s</mi><mi>p</mi><mo>−</mo><mi>M</mi><mi>g</mi></mrow></msub></mrow></math></span> (99.8 %), and <span><math><mrow><msubsup><mi>η</mi><msubsup><mrow><mi>N</mi><mi>H</mi></mrow><mn>4</mn><mo>+</mo></msubsup><msup><mrow><mi>S</mi><mi>C</mi><mi>E</mi><mi>M</mi></mrow><mo>′</mo></msup></msubsup></mrow></math></span> (91.3 %), and a relatively low total cost (0.946 $ kg<sup>-1</sup>) can be achieved in SCS-ED process at optimized parameters. The above findings give new insights into SCS-ED for directly producing high purity <span><math><mrow><mtext>Asp</mtext><mo>‐</mo><mtext>Mg</mtext></mrow></math></span>. Compared with traditional methods, this ion substitution approach provides a more efficient and streamlined process, showing strong potential in the production of high-purity divalent salt (e.g., amino acid divalent salt).</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124763"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010762","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct production of high-purity amino acid salts offers an efficient and sustainable solution to reduce fresh acid/base consumption and wastewater generation. In this study, we specifically designed a selective cation substitution electrodialysis (SCS-ED) with a novel configuration to enable the direct production of high-purity magnesium l-aspartate (AspMg) from monoammonium l-aspartate. To achieve this, we firstly established an ion transport model to quantify the ion transport including the competitive migration of NH4+ and Mg2+ through the selective cation exchange membrane, and the co-ion transport of NH4+ through the anion exchange membrane. Then, effects of various parameters including stack voltage, feed concentration, and feed velocity on the ion transport as well as SCS-ED performance were investigated comprehensively. Results indicate that decreasing stack voltage acts as a significant role in obtaining a high selectivity (SNH4+/Mg2+SCSED) and high purity (PAspMg), decreasing feed concentration acts as a significant role in obtaining a high current efficiency (ηNH4+SCEM) and SNH4+/Mg2+SCSED, and increasing feed velocity acts as an important role in obtaining a relatively low total coat. Overall, considering the high PAspMg for pharmaceutical application, a high SNH4+/Mg2+SCSED (32), PAspMg (99.8 %), and ηNH4+SCEM (91.3 %), and a relatively low total cost (0.946 $ kg-1) can be achieved in SCS-ED process at optimized parameters. The above findings give new insights into SCS-ED for directly producing high purity AspMg. Compared with traditional methods, this ion substitution approach provides a more efficient and streamlined process, showing strong potential in the production of high-purity divalent salt (e.g., amino acid divalent salt).

Abstract Image

选择性阳离子取代电渗析使直接生产高纯度的天冬氨酸镁:定量离子传输
直接生产高纯度氨基酸盐提供了一种高效和可持续的解决方案,以减少新鲜酸/碱的消耗和废水的产生。在这项研究中,我们专门设计了一种具有新颖配置的选择性阳离子取代电渗析(SCS-ED),以实现从l-天冬氨酸单铵直接生产高纯度l-天冬氨酸镁(Asp‐Mg)。为此,我们首先建立了离子传输模型,量化离子传输,包括NH4+和Mg2+通过选择性阳离子交换膜的竞争迁移,以及NH4+通过阴离子交换膜的合作离子传输。然后,全面研究了堆压、进料浓度、进料速度等参数对离子输运及SCS-ED性能的影响。结果表明,降低堆压对获得高选择性(SNH4+/Mg2+SCS−ED)和高纯度(PAsp−Mg)起重要作用,降低进料浓度对获得高电流效率(ηNH4+SCEM’)和SNH4+/Mg2+SCS−ED起重要作用,增加进料速度对获得相对较低的总包被起重要作用。综上所述,考虑到高PAsp−Mg在制药领域的应用,在优化的工艺参数下,SCS-ED工艺可以获得较高的SNH4+/Mg2+SCS−ED(32)、PAsp−Mg(99.8%)和ηNH4+SCEM '(91.3%),且总成本相对较低(0.946美元kg-1)。以上研究结果为SCS-ED直接制备高纯度Asp‐Mg提供了新的思路。与传统方法相比,这种离子取代方法提供了一个更高效和简化的过程,在生产高纯度二价盐(如氨基酸二价盐)方面显示出强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信