Ultrafast & low-power consumption 2D floating-gate devices for opto-electronic hybrid neural networks

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuting He , Feng Xiong , Jinbao Jiang , Biyuan Zheng , Wei Xu , Mengjian Zhu , Zhihong Zhu
{"title":"Ultrafast & low-power consumption 2D floating-gate devices for opto-electronic hybrid neural networks","authors":"Yuting He ,&nbsp;Feng Xiong ,&nbsp;Jinbao Jiang ,&nbsp;Biyuan Zheng ,&nbsp;Wei Xu ,&nbsp;Mengjian Zhu ,&nbsp;Zhihong Zhu","doi":"10.1016/j.carbon.2025.120875","DOIUrl":null,"url":null,"abstract":"<div><div>Optoelectronic hybrid neural networks combine the advantages of electronical and optical neural networks, enabling next-generation neuromorphic computing systems with nanosecond processing speeds, fJ-level energy efficiency, and wafer-scale integration density. Here, we demonstrate a MoS<sub>2</sub>/h-BN/graphene based 2D-material floating gate (FG) transistor exhibiting excellent electrical memory characteristics and dual mode photo-response: both positive (PPC) and negative photoconductance (NPC). Utilizing this device, we experimentally demonstrate a three-layer artificial neural network achieving high image recognition accuracy (97.2 %) with ultrafast operation (30 ns) and ultralow energy consumption (3.2 fJ/event). These results indicate that optoelectronic hybrid neural networks implemented with all-2D FG transistors can achieve energy-efficient and high-speed in-memory sensing and computing, showing promising potential in next-generation neuromorphic computing.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"246 ","pages":"Article 120875"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325008917","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optoelectronic hybrid neural networks combine the advantages of electronical and optical neural networks, enabling next-generation neuromorphic computing systems with nanosecond processing speeds, fJ-level energy efficiency, and wafer-scale integration density. Here, we demonstrate a MoS2/h-BN/graphene based 2D-material floating gate (FG) transistor exhibiting excellent electrical memory characteristics and dual mode photo-response: both positive (PPC) and negative photoconductance (NPC). Utilizing this device, we experimentally demonstrate a three-layer artificial neural network achieving high image recognition accuracy (97.2 %) with ultrafast operation (30 ns) and ultralow energy consumption (3.2 fJ/event). These results indicate that optoelectronic hybrid neural networks implemented with all-2D FG transistors can achieve energy-efficient and high-speed in-memory sensing and computing, showing promising potential in next-generation neuromorphic computing.

Abstract Image

用于光电混合神经网络的超快低功耗二维浮栅器件
光电混合神经网络结合了电子和光神经网络的优势,使下一代神经形态计算系统具有纳秒级的处理速度、fj级的能量效率和晶圆级的集成密度。在这里,我们展示了一种基于MoS2/h-BN/石墨烯的2d材料浮栅(FG)晶体管,它具有优异的电记忆特性和双模光响应:正(PPC)和负光导(NPC)。利用该装置,我们实验证明了一个三层人工神经网络,以超快的运行速度(30 ns)和超低的能耗(3.2 fJ/event)实现了高图像识别精度(97.2%)。这些结果表明,采用全二维FG晶体管实现的光电混合神经网络可以实现高效、高速的内存传感和计算,在下一代神经形态计算中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信