Bimetallic tungsten disulfide engineered MXene nanocomposite: A multifunctional electrode for high-performance supercapacitor and overall water splitting towards sustainable green hydrogen production

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Amjad Khan , Ragu Sasikumar , Byungki Kim
{"title":"Bimetallic tungsten disulfide engineered MXene nanocomposite: A multifunctional electrode for high-performance supercapacitor and overall water splitting towards sustainable green hydrogen production","authors":"Amjad Khan ,&nbsp;Ragu Sasikumar ,&nbsp;Byungki Kim","doi":"10.1016/j.jpowsour.2025.238473","DOIUrl":null,"url":null,"abstract":"<div><div>The development of multifunctional materials that address both energy storage and sustainable hydrogen production is critical for next-generation renewable energy technologies. This study presents a cobalt-nickel-tungsten disulfide-incorporated MXene (MXene/CoNiWS<sub>2</sub>) nanocomposite as a high-performance electrode for supercapacitor and overall water-splitting applications. As a supercapacitor electrode, it delivers a high specific capacity of 631.98 mAh cm<sup>−2</sup> (1007.08 F g<sup>−1</sup>) at 1 mA cm<sup>−2</sup>, retaining 81.1 % capacity and 96.5 % coulombic efficiency after 15,000 cycles. The device achieves an energy density of 17.65 Wh kg<sup>−1</sup> and a power density of 56.35 W kg<sup>−1</sup>. For water-splitting, the electrode exhibits a hydrogen evolution reaction (HER) overpotential of 209.1 mV at 10 mA cm<sup>−2</sup> (Tafel slope: 92.6 mV dec<sup>−1</sup>) and an oxygen evolution reaction (OER) overpotential of 223 mV at 10 mA cm<sup>−2</sup> (Tafel slope: 102.2 mV dec<sup>−1</sup>), exhibits excellent catalytic activity and durability. Real-time demonstrations power small electronic devices including a fan, light-emitting diode (LED), stopwatch, and calculator using the supercapacitor. Additionally, the water-splitting cell integrates with renewable energy sources to produce green hydrogen (H<sub>2</sub>), which subsequently powers a fuel cell to drive a fan in real time. These findings position MXene/CoNiWS<sub>2</sub> as a scalable and versatile material for energy storage and green hydrogen production systems.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"659 ","pages":"Article 238473"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325023092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of multifunctional materials that address both energy storage and sustainable hydrogen production is critical for next-generation renewable energy technologies. This study presents a cobalt-nickel-tungsten disulfide-incorporated MXene (MXene/CoNiWS2) nanocomposite as a high-performance electrode for supercapacitor and overall water-splitting applications. As a supercapacitor electrode, it delivers a high specific capacity of 631.98 mAh cm−2 (1007.08 F g−1) at 1 mA cm−2, retaining 81.1 % capacity and 96.5 % coulombic efficiency after 15,000 cycles. The device achieves an energy density of 17.65 Wh kg−1 and a power density of 56.35 W kg−1. For water-splitting, the electrode exhibits a hydrogen evolution reaction (HER) overpotential of 209.1 mV at 10 mA cm−2 (Tafel slope: 92.6 mV dec−1) and an oxygen evolution reaction (OER) overpotential of 223 mV at 10 mA cm−2 (Tafel slope: 102.2 mV dec−1), exhibits excellent catalytic activity and durability. Real-time demonstrations power small electronic devices including a fan, light-emitting diode (LED), stopwatch, and calculator using the supercapacitor. Additionally, the water-splitting cell integrates with renewable energy sources to produce green hydrogen (H2), which subsequently powers a fuel cell to drive a fan in real time. These findings position MXene/CoNiWS2 as a scalable and versatile material for energy storage and green hydrogen production systems.
双金属二硫化钨工程MXene纳米复合材料:用于高性能超级电容器和整体水分解的多功能电极,实现可持续的绿色制氢
同时解决储能和可持续制氢问题的多功能材料的开发对下一代可再生能源技术至关重要。本研究提出了一种钴镍钨二硫化结合MXene (MXene/CoNiWS2)纳米复合材料,作为超级电容器和整体水分解应用的高性能电极。作为超级电容器电极,它在1ma cm - 2下提供631.98 mAh cm - 2 (1007.08 F g - 1)的高比容量,在15000次循环后保持81.1%的容量和96.5%的库仑效率。器件的能量密度为17.65 Wh kg−1,功率密度为56.35 W kg−1。对于水分解,电极在10 mA cm−2时的析氢反应(HER)过电位为209.1 mV (Tafel斜率:92.6 mV dec−1),在10 mA cm−2时的析氧反应(OER)过电位为223 mV (Tafel斜率:102.2 mV dec−1),具有优异的催化活性和耐久性。实时演示使用超级电容器为小型电子设备供电,包括风扇、发光二极管(LED)、秒表和计算器。此外,水分解电池与可再生能源相结合,产生绿色氢(H2),随后为燃料电池提供动力,实时驱动风扇。这些发现将MXene/CoNiWS2定位为储能和绿色制氢系统的可扩展和通用材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信