Recombination activity of chromium-gallium pairs in silicon

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Sanjida Sabah , Tien T. Le , Zhuangyi Zhou , Chang Sun , Yichun Wang , Nannan Fu , Fiacre Rougieux , Daniel Macdonald , AnYao Liu
{"title":"Recombination activity of chromium-gallium pairs in silicon","authors":"Sanjida Sabah ,&nbsp;Tien T. Le ,&nbsp;Zhuangyi Zhou ,&nbsp;Chang Sun ,&nbsp;Yichun Wang ,&nbsp;Nannan Fu ,&nbsp;Fiacre Rougieux ,&nbsp;Daniel Macdonald ,&nbsp;AnYao Liu","doi":"10.1016/j.solmat.2025.113989","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding metallic impurities in silicon is essential for the development of silicon-based devices such as solar cells. Transition metals such as iron and chromium have been recognised as harmful impurities in silicon, particularly in p-type silicon. As the photovoltaic industry shifted from boron to gallium doping in p-type silicon, understanding the recombination behaviour of chromium-gallium (CrGa) pairs becomes crucial. This study assesses the recombination parameters of CrGa pairs in silicon using both injection-dependent lifetime spectroscopy (IDLS) and deep-level transient spectroscopy (DLTS). Customised Czochralski (Cz) silicon ingots with known amounts of intentional Cr contamination during the ingot growth process were used, with wafer resistivities varying across the range of 0.2 Ωcm – 8 Ωcm. The presence of Cr in these silicon wafers was first confirmed by monitoring the CrGa pair association and dissociation processes through lifetime-based measurements, which also confirmed the fully paired state of CrGa pairs. The CrGa concentrations in wafers were confirmed by DLTS. Through IDLS and DLTS, the following CrGa defect parameters were extracted: defect energy level <span><math><mrow><msub><mi>E</mi><mi>t</mi></msub><mo>=</mo><msub><mi>E</mi><mi>V</mi></msub><mo>+</mo><mn>0.47</mn><mspace></mspace><mi>e</mi><mi>V</mi></mrow></math></span>, electron capture cross section <span><math><mrow><msub><mi>σ</mi><mi>n</mi></msub><mo>=</mo><mn>5.1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup><mspace></mspace><mi>c</mi><msup><mi>m</mi><mn>2</mn></msup></mrow></math></span> and hole capture cross section <span><math><mrow><msub><mi>σ</mi><mi>p</mi></msub><mo>=</mo><mn>1.1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>15</mn></mrow></msup><mspace></mspace><mi>c</mi><msup><mi>m</mi><mn>2</mn></msup></mrow></math></span>.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"295 ","pages":"Article 113989"},"PeriodicalIF":6.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005902","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding metallic impurities in silicon is essential for the development of silicon-based devices such as solar cells. Transition metals such as iron and chromium have been recognised as harmful impurities in silicon, particularly in p-type silicon. As the photovoltaic industry shifted from boron to gallium doping in p-type silicon, understanding the recombination behaviour of chromium-gallium (CrGa) pairs becomes crucial. This study assesses the recombination parameters of CrGa pairs in silicon using both injection-dependent lifetime spectroscopy (IDLS) and deep-level transient spectroscopy (DLTS). Customised Czochralski (Cz) silicon ingots with known amounts of intentional Cr contamination during the ingot growth process were used, with wafer resistivities varying across the range of 0.2 Ωcm – 8 Ωcm. The presence of Cr in these silicon wafers was first confirmed by monitoring the CrGa pair association and dissociation processes through lifetime-based measurements, which also confirmed the fully paired state of CrGa pairs. The CrGa concentrations in wafers were confirmed by DLTS. Through IDLS and DLTS, the following CrGa defect parameters were extracted: defect energy level Et=EV+0.47eV, electron capture cross section σn=5.1×1015cm2 and hole capture cross section σp=1.1×1015cm2.
硅中铬镓对的复合活性
了解硅中的金属杂质对于开发硅基器件(如太阳能电池)至关重要。过渡金属如铁和铬被认为是硅中的有害杂质,特别是在p型硅中。随着光伏产业从p型硅中的硼掺杂转向镓掺杂,了解铬镓(CrGa)对的复合行为变得至关重要。本研究利用注入依赖寿命光谱(IDLS)和深能级瞬态光谱(DLTS)评估了硅中CrGa对的重组参数。在铸锭生长过程中,使用了已知数量的故意铬污染的定制的Cz硅锭,晶圆电阻率在0.2 Ωcm - 8 Ωcm范围内变化。通过基于寿命的测量,通过监测CrGa对的结合和解离过程,首先证实了Cr在这些硅片中的存在,这也证实了CrGa对的完全配对状态。用DLTS法确定了晶圆中CrGa的浓度。通过IDLS和DLTS提取CrGa缺陷参数:缺陷能级Et=EV+0.47eV,电子俘获截面σn=5.1×10−15cm2,空穴俘获截面σp=1.1×10−15cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信