Enhancing thermal management of GaN transistors with direct oil jet impingement: Experimental insights for high-power electronics

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Anas El amraoui , Riadh Boubaker , Souad Harmand
{"title":"Enhancing thermal management of GaN transistors with direct oil jet impingement: Experimental insights for high-power electronics","authors":"Anas El amraoui ,&nbsp;Riadh Boubaker ,&nbsp;Souad Harmand","doi":"10.1016/j.ijthermalsci.2025.110364","DOIUrl":null,"url":null,"abstract":"<div><div>This study experimentally investigates the cooling performance of oil jet impingement on high-power GaN transistors, focusing on the effects of nozzle geometry (diameter: 0.5 mm, 1 mm; nozzle-transistor distance: 5 mm, 10 mm) and properties of two fluids (a NewOil-A and Siloil M40). At a flow rate of 80 mL/min, Siloil M40 achieved a heat transfer coefficient of 13 848 W/m<sup>2</sup>K, reducing junction temperatures to 120 °C under 38 W power dissipation (corresponding to a heat flux density of 135 W/cm<sup>2</sup>). In contrast, NewOil-A yielded a junction temperature of 90 °C under identical power and heat flux conditions, demonstrating NewOil-A's superior cooling performance. The optimized system enabled a 198 % improvement in power handling compared to uncooled operation. Smaller nozzles (diameter: 0.5 mm) and reduced nozzle-transistor distance (5 mm) enhanced cooling efficiency. Additionally, a novel correlation linking Nusselt, Reynolds, and Prandtl numbers is proposed, offering practical design guidelines for GaN-based power electronics in applications like electric vehicles.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"220 ","pages":"Article 110364"},"PeriodicalIF":5.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925006878","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study experimentally investigates the cooling performance of oil jet impingement on high-power GaN transistors, focusing on the effects of nozzle geometry (diameter: 0.5 mm, 1 mm; nozzle-transistor distance: 5 mm, 10 mm) and properties of two fluids (a NewOil-A and Siloil M40). At a flow rate of 80 mL/min, Siloil M40 achieved a heat transfer coefficient of 13 848 W/m2K, reducing junction temperatures to 120 °C under 38 W power dissipation (corresponding to a heat flux density of 135 W/cm2). In contrast, NewOil-A yielded a junction temperature of 90 °C under identical power and heat flux conditions, demonstrating NewOil-A's superior cooling performance. The optimized system enabled a 198 % improvement in power handling compared to uncooled operation. Smaller nozzles (diameter: 0.5 mm) and reduced nozzle-transistor distance (5 mm) enhanced cooling efficiency. Additionally, a novel correlation linking Nusselt, Reynolds, and Prandtl numbers is proposed, offering practical design guidelines for GaN-based power electronics in applications like electric vehicles.
用直接油射流冲击增强氮化镓晶体管的热管理:高功率电子学的实验见解
本研究通过实验研究了油射流对大功率GaN晶体管的冷却性能,重点研究了喷嘴几何形状(直径:0.5 mm、1 mm;喷嘴与晶体管距离:5 mm、10 mm)和两种流体(NewOil-A和Siloil M40)性能的影响。在流量为80 mL/min时,Siloil M40的换热系数为13 848 W/m2K,在38 W功耗下(热流密度为135 W/cm2),结温降至120℃。相比之下,在相同的功率和热流条件下,NewOil-A的结温为90°C,证明了NewOil-A优越的冷却性能。与非冷却操作相比,优化后的系统在功率处理方面提高了198%。更小的喷嘴(直径:0.5毫米)和减少喷嘴-晶体管距离(5毫米)提高了冷却效率。此外,还提出了一种新的关联,将Nusselt, Reynolds和Prandtl数联系起来,为电动汽车等应用中基于gan的电力电子设备提供实用的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信