Hexagonally structured microbial desalination cell for bio-electrochemically mediated removal of pollutants and improved desalination of hypersaline solution.

IF 4.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Francis Kwarteng , Jingyu Huang , Prince Atta Opoku
{"title":"Hexagonally structured microbial desalination cell for bio-electrochemically mediated removal of pollutants and improved desalination of hypersaline solution.","authors":"Francis Kwarteng ,&nbsp;Jingyu Huang ,&nbsp;Prince Atta Opoku","doi":"10.1016/j.bioelechem.2025.109118","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a new hexagonally structured multi-anode shared cathode microbial desalination cell (MASC-MDC) designed to address the limitations of traditional MDCs in handling hypersaline solutions. The hexagonal shape shortens the intermembrane distance to 2 cm, significantly reducing internal resistance (∼50 Ω) and enhancing bioelectrochemical performance. Compared to a conventional three-chamber MDC, the MASC-MDC achieved better results, including a higher open-circuit voltage (646 vs. 553 mV), faster desalination (95.71 % in five cycles vs. 94.29 % in seven), higher desalination rate (0.27 vs. 0.195 g·L<sup>−1</sup>·h<sup>−1</sup>), and greater maximum power density (162.2 vs. 119.2 mW·m<sup>−2</sup>). The system also attained effective pollutant removal with 90.05 % COD reduction. These findings demonstrate that the multi-anode shared cathode design enhances ion transport, bioenergy production, and wastewater treatment simultaneously, offering a scalable, self-powered alternative to energy-intensive desalination methods.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"168 ","pages":"Article 109118"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156753942500221X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new hexagonally structured multi-anode shared cathode microbial desalination cell (MASC-MDC) designed to address the limitations of traditional MDCs in handling hypersaline solutions. The hexagonal shape shortens the intermembrane distance to 2 cm, significantly reducing internal resistance (∼50 Ω) and enhancing bioelectrochemical performance. Compared to a conventional three-chamber MDC, the MASC-MDC achieved better results, including a higher open-circuit voltage (646 vs. 553 mV), faster desalination (95.71 % in five cycles vs. 94.29 % in seven), higher desalination rate (0.27 vs. 0.195 g·L−1·h−1), and greater maximum power density (162.2 vs. 119.2 mW·m−2). The system also attained effective pollutant removal with 90.05 % COD reduction. These findings demonstrate that the multi-anode shared cathode design enhances ion transport, bioenergy production, and wastewater treatment simultaneously, offering a scalable, self-powered alternative to energy-intensive desalination methods.
用于生物电化学去除污染物和改进高盐溶液脱盐的六边形结构微生物脱盐电池。
本研究介绍了一种新型六边形结构的多阳极共享阴极微生物海水淡化电池(MASC-MDC),旨在解决传统mdc在处理高盐溶液方面的局限性。六角形将膜间距离缩短至2 cm,显著降低了内阻(~ 50 Ω),提高了生物电化学性能。与传统的三腔室MDC相比,MASC-MDC取得了更好的效果,包括更高的开路电压(646 vs. 553 mV),更快的脱盐速度(5次循环95.71% vs. 7次94.29%),更高的脱盐率(0.27 vs. 0.195 g·L−1·h−1)和更高的最大功率密度(162.2 vs. 119.2 mW·m−2)。该系统还达到了有效的污染物去除效果,COD降低90.05%。这些发现表明,多阳极共享阴极设计可以同时增强离子传输、生物能源生产和废水处理,为能源密集型海水淡化方法提供了一种可扩展的、自供电的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信