Binder-free electrode based on Zn-doped Ni3S2 vertically grown 2-dimensional nanostructures on Ni foam with boosted electrochemical performance for energy storage applications

IF 4.2 3区 工程技术 Q2 ELECTROCHEMISTRY
Muhammad Saleem Akhtar , Zaeem Ur Rehman , Witold Chromiński , Gabriela Komorowska , Tomasz Wejrzanowski
{"title":"Binder-free electrode based on Zn-doped Ni3S2 vertically grown 2-dimensional nanostructures on Ni foam with boosted electrochemical performance for energy storage applications","authors":"Muhammad Saleem Akhtar ,&nbsp;Zaeem Ur Rehman ,&nbsp;Witold Chromiński ,&nbsp;Gabriela Komorowska ,&nbsp;Tomasz Wejrzanowski","doi":"10.1016/j.elecom.2025.108058","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal sulfides have drawn a lot of interest in the field of electrochemical energy storage. However, their performance is hampered due to the stacking faults during the electrode fabrication. In this study, we report the Zn-doped Ni<sub>3</sub>S<sub>2</sub> vertically grown 2-dimensional nanostructures on the conductive nickel foam by a one-step, rapid, energy-efficient, and cost-effective microwave-assisted method. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) analyses confirmed the morphological and phase composition as initially identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical investigations substantiated the boosted performance of the electrode, an impressive specific capacitance value of 1984 F g<sup>−1</sup> and 5.95 F cm<sup>−2</sup> at a discharge current of 3 mA cm<sup>−2</sup>. Later on, this electrode, when tested in a Swagelok cell as a positive electrode and graphene nano pellets as a negative electrode, achieved a maximum energy density of 45.5 Whkg<sup>−1</sup> and 910 Wkg<sup>−1</sup> power at a discharge current rate of 1 A g<sup>−1</sup>. The pseudocapacitive characteristics of this binder-free nanostructured electrode, driven by reversible redox reactions, highlight their potential for high-performance energy storage applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"180 ","pages":"Article 108058"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001985","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal sulfides have drawn a lot of interest in the field of electrochemical energy storage. However, their performance is hampered due to the stacking faults during the electrode fabrication. In this study, we report the Zn-doped Ni3S2 vertically grown 2-dimensional nanostructures on the conductive nickel foam by a one-step, rapid, energy-efficient, and cost-effective microwave-assisted method. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) analyses confirmed the morphological and phase composition as initially identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical investigations substantiated the boosted performance of the electrode, an impressive specific capacitance value of 1984 F g−1 and 5.95 F cm−2 at a discharge current of 3 mA cm−2. Later on, this electrode, when tested in a Swagelok cell as a positive electrode and graphene nano pellets as a negative electrode, achieved a maximum energy density of 45.5 Whkg−1 and 910 Wkg−1 power at a discharge current rate of 1 A g−1. The pseudocapacitive characteristics of this binder-free nanostructured electrode, driven by reversible redox reactions, highlight their potential for high-performance energy storage applications.

Abstract Image

基于zno掺杂Ni3S2垂直生长二维纳米结构的无粘结剂电极在Ni泡沫上具有提高电化学性能的储能应用
过渡金属硫化物在电化学储能领域引起了广泛的关注。然而,由于电极在制造过程中存在堆积缺陷,影响了其性能。在这项研究中,我们报道了通过一步、快速、节能和经济的微波辅助方法在导电泡沫镍上垂直生长zn掺杂Ni3S2的二维纳米结构。透射电子显微镜(TEM)和高分辨率透射电子显微镜(HR-TEM)分析证实了最初通过扫描电子显微镜(SEM)和x射线衍射(XRD)鉴定的形态和相组成。电化学研究证实了电极的性能提高,在放电电流为3 mA cm−2时,比电容值为1984 F g−1和5.95 F cm−2。随后,该电极在世伟洛克电池中作为正极和石墨烯纳米颗粒作为负极进行测试,在放电电流为1 ag−1的情况下,获得了45.5 Whkg−1和910 Wkg−1的最大能量密度。这种无粘结剂纳米结构电极的赝电容特性,由可逆氧化还原反应驱动,突出了它们在高性能储能应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信