Mussawir Ul Mehmood , Hammad Ur Rahman , Demet Baldan Desdemir , Ismail Lazoglu
{"title":"Frost-EffNet: A deep learning model for frost detection in refrigeration systems","authors":"Mussawir Ul Mehmood , Hammad Ur Rahman , Demet Baldan Desdemir , Ismail Lazoglu","doi":"10.1016/j.ijrefrig.2025.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>Frost accumulation on the heat exchange units in refrigeration systems significantly impairs performance by restricting airflow, leading to increased power consumption. Despite its impact, the accurate and timely detection of frost buildup remains a challenging task, hindering the efficient initiation and control of defrost mechanisms. This study introduces Frost-EffNet, an innovative model to predict frost accumulation on refrigeration unit evaporator coils. Frost-EffNet is a modified version of the EfficientNet architecture. The model was validated using five distinct EfficientNet variants, with performance evaluated on a dataset of evaporator coil images. Comparative analysis was conducted by varying key hyperparameters to identify the optimal configuration for the best-performing model. Additionally, Grad-CAM (Gradient-weighted Class Activation Mapping) analysis was employed to highlight the areas of the evaporator coil that the model focused on for frost estimation, providing valuable insights into the model’s decision-making process. The proposed Frost-EffNet model demonstrated high predictive accuracy, achieving 92.47 % accuracy on the test dataset, with a mean absolute error (MAE) of 0.11 mm. A comparative performance analysis revealed that Frost-EffNet outperforms other convolutional neural network (CNN) models in terms of accuracy, while also being computationally more efficient.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"180 ","pages":"Pages 416-425"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725003810","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Frost accumulation on the heat exchange units in refrigeration systems significantly impairs performance by restricting airflow, leading to increased power consumption. Despite its impact, the accurate and timely detection of frost buildup remains a challenging task, hindering the efficient initiation and control of defrost mechanisms. This study introduces Frost-EffNet, an innovative model to predict frost accumulation on refrigeration unit evaporator coils. Frost-EffNet is a modified version of the EfficientNet architecture. The model was validated using five distinct EfficientNet variants, with performance evaluated on a dataset of evaporator coil images. Comparative analysis was conducted by varying key hyperparameters to identify the optimal configuration for the best-performing model. Additionally, Grad-CAM (Gradient-weighted Class Activation Mapping) analysis was employed to highlight the areas of the evaporator coil that the model focused on for frost estimation, providing valuable insights into the model’s decision-making process. The proposed Frost-EffNet model demonstrated high predictive accuracy, achieving 92.47 % accuracy on the test dataset, with a mean absolute error (MAE) of 0.11 mm. A comparative performance analysis revealed that Frost-EffNet outperforms other convolutional neural network (CNN) models in terms of accuracy, while also being computationally more efficient.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.