BIOSORBENT of brown algae (Lessonia nigrescen) for mercury ions (HG2+) removal from aqueous solution

IF 4.2 Q2 CHEMISTRY, MULTIDISCIPLINARY
William Edgar Heredia Peña , Antonio Ernesto Durand Gamez , Lilia Mary Miranda Ramos , Pavel Kewin Delgado Sarmiento , Stephanie Elena Sosa Pulcha , Vitor de Cinque Almeida , Hugo Guillermo Jiménez Pacheco
{"title":"BIOSORBENT of brown algae (Lessonia nigrescen) for mercury ions (HG2+) removal from aqueous solution","authors":"William Edgar Heredia Peña ,&nbsp;Antonio Ernesto Durand Gamez ,&nbsp;Lilia Mary Miranda Ramos ,&nbsp;Pavel Kewin Delgado Sarmiento ,&nbsp;Stephanie Elena Sosa Pulcha ,&nbsp;Vitor de Cinque Almeida ,&nbsp;Hugo Guillermo Jiménez Pacheco","doi":"10.1016/j.rechem.2025.102703","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury contamination in water poses significant risks to both human health and ecosystems. This study developed a biosorbent using brown algae (<em>Lessonia nigrescens</em>) to remove Hg<sup>2+</sup> ions from aqueous solutions. The biosorbent was prepared using biomass with particle sizes between 0.5 and 1.0 mm and treated with a 0.20 M CaCl₂ solution. Characterization of the materials was performed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques. Adsorption experiments were conducted in a batch system, examining the effects of pH and contact time on adsorption efficiency. Results indicated that the biosorbent contains surface functional groups that significantly enhance Hg<sup>2+</sup> ion biosorption. Additionally, pH variations within the tested range of 3.5 to 7.5 showed minimal impact on biosorption efficiency. Kinetic analysis revealed that the pseudo-second-order model best described experimental data, suggesting that chemisorption is the primary mechanism governing the process. The maximum adsorption capacity (qₑₓₚ) was found to be 26.87 mg g<sup>−1</sup>. Additionally, equilibrium data were better fitted by the Freundlich isotherm model, indicating heterogeneous and multilayer adsorption behavior.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"18 ","pages":"Article 102703"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625006861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mercury contamination in water poses significant risks to both human health and ecosystems. This study developed a biosorbent using brown algae (Lessonia nigrescens) to remove Hg2+ ions from aqueous solutions. The biosorbent was prepared using biomass with particle sizes between 0.5 and 1.0 mm and treated with a 0.20 M CaCl₂ solution. Characterization of the materials was performed using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques. Adsorption experiments were conducted in a batch system, examining the effects of pH and contact time on adsorption efficiency. Results indicated that the biosorbent contains surface functional groups that significantly enhance Hg2+ ion biosorption. Additionally, pH variations within the tested range of 3.5 to 7.5 showed minimal impact on biosorption efficiency. Kinetic analysis revealed that the pseudo-second-order model best described experimental data, suggesting that chemisorption is the primary mechanism governing the process. The maximum adsorption capacity (qₑₓₚ) was found to be 26.87 mg g−1. Additionally, equilibrium data were better fitted by the Freundlich isotherm model, indicating heterogeneous and multilayer adsorption behavior.

Abstract Image

褐藻对水中汞离子(HG2+)的生物吸附剂研究
水中的汞污染对人类健康和生态系统都构成重大风险。本研究利用褐藻(Lessonia nigrescens)开发了一种去除水溶液中Hg2+离子的生物吸附剂。采用粒径在0.5 ~ 1.0 mm之间的生物质制备生物吸附剂,并用0.20 M的氯化钙溶液处理。利用傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)技术对材料进行了表征。在间歇式系统中进行了吸附实验,考察了pH和接触时间对吸附效率的影响。结果表明,该生物吸附剂表面含有明显增强Hg2+生物吸附的官能团。此外,在3.5 ~ 7.5的测试范围内,pH变化对生物吸附效率的影响最小。动力学分析表明,拟二阶模型最能描述实验数据,表明化学吸附是控制这一过程的主要机制。最大吸附量(qₑₓₚ)为26.87 mg g−1。此外,Freundlich等温线模型能较好地拟合平衡数据,表明了非均相和多层吸附行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信