Study of a solar-wind-hydrogen-gas-grid multi-energy system with CCHP distributed cooperative operation

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Manfeng Li , Hailong Li , Xiaoqiang Zhai , Suping Li , Weilin Li , Yiji Lu
{"title":"Study of a solar-wind-hydrogen-gas-grid multi-energy system with CCHP distributed cooperative operation","authors":"Manfeng Li ,&nbsp;Hailong Li ,&nbsp;Xiaoqiang Zhai ,&nbsp;Suping Li ,&nbsp;Weilin Li ,&nbsp;Yiji Lu","doi":"10.1016/j.applthermaleng.2025.128562","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing renewable energy sources such as solar, wind, and hydrogen helps reduce dependence on fossil fuels and mitigate greenhouse gas emissions. This study introduces a renewable energy system combining solar, wind, hydrogen, and natural gas resources with a combined cooling, heating and power system, absorption chillers and, air source heat pumps. The system is designed to dynamically meet the cooling, heating, and power demands. The system’s performance was analyzed using TRNSYS simulation, highlighting significant improvements in energy efficiency (η<sub>en</sub>), primary energy saving rate (PESR), sustainability index (SI), and life cycle cost (LCC). Using response surface methodology, a multi-objective optimization was carried out to determine optimal configurations of photovoltaic panel area, solar collector panel area, and number of air–fuel cells. The results indicate that the optimal system configuration includes 4 wind turbines, 50 air–fuel cells, 500 m<sup>2</sup> of PV panels and 5500 m<sup>2</sup> of solar collector. This configuration achieves an η<sub>en</sub> of 85.4 %, PESR of 87.3 %, SI of 3.785, and LCC of 4.119 × 10<sup>6</sup> $. The integrated system demonstrates enhanced energy efficiency, economic performance, and supply reliability, providing a viable pathway for renewable energy integration in building applications.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"280 ","pages":"Article 128562"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125031540","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing renewable energy sources such as solar, wind, and hydrogen helps reduce dependence on fossil fuels and mitigate greenhouse gas emissions. This study introduces a renewable energy system combining solar, wind, hydrogen, and natural gas resources with a combined cooling, heating and power system, absorption chillers and, air source heat pumps. The system is designed to dynamically meet the cooling, heating, and power demands. The system’s performance was analyzed using TRNSYS simulation, highlighting significant improvements in energy efficiency (ηen), primary energy saving rate (PESR), sustainability index (SI), and life cycle cost (LCC). Using response surface methodology, a multi-objective optimization was carried out to determine optimal configurations of photovoltaic panel area, solar collector panel area, and number of air–fuel cells. The results indicate that the optimal system configuration includes 4 wind turbines, 50 air–fuel cells, 500 m2 of PV panels and 5500 m2 of solar collector. This configuration achieves an ηen of 85.4 %, PESR of 87.3 %, SI of 3.785, and LCC of 4.119 × 106 $. The integrated system demonstrates enhanced energy efficiency, economic performance, and supply reliability, providing a viable pathway for renewable energy integration in building applications.
热电联产分布式协同运行的太阳能-风-氢-气网多能系统研究
利用太阳能、风能和氢等可再生能源有助于减少对化石燃料的依赖,并减少温室气体排放。本研究介绍了一种结合太阳能、风能、氢气和天然气资源的可再生能源系统,该系统采用冷热电联产系统、吸收式制冷机和空气源热泵。该系统被设计为动态满足冷却、加热和电力需求。利用TRNSYS仿真分析了该系统的性能,突出了能源效率(ηen)、一次节能率(PESR)、可持续性指数(SI)和生命周期成本(LCC)的显著改善。采用响应面法进行多目标优化,确定光伏板面积、太阳能集热器板面积和空气燃料电池数量的最优配置。结果表明,最优系统配置包括4台风力发电机组、50个空气燃料电池、500 m2光伏板和5500 m2太阳能集热器。该结构的η值为85.4%,PESR为87.3%,SI为3.785,LCC为4.119 × 106美元。综合系统展示了增强的能源效率、经济性能和供应可靠性,为可再生能源在建筑应用中的整合提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信