Ti₃C₂Tₓ-engineered MoS₂/SiNWs multifunctional photocathode for Photoelectrochemical hydrogen generation and wastewater remediation

IF 5.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Sweta Sharma , Aditi Halder , Pooja Devi
{"title":"Ti₃C₂Tₓ-engineered MoS₂/SiNWs multifunctional photocathode for Photoelectrochemical hydrogen generation and wastewater remediation","authors":"Sweta Sharma ,&nbsp;Aditi Halder ,&nbsp;Pooja Devi","doi":"10.1016/j.inoche.2025.115552","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient and durable photocathodes for integrated hydrogen generation and wastewater treatment remains a critical challenge in photoelectrochemical (PEC) systems. This study pioneers a Ti₃C₂Tₓ MXene-engineered MoS₂/SiNWs photocathode, leveraging the superior charge transport, catalytic activity, and stability of MXenes to address the persistent limitations of MoS₂-based systems. The optimized Ti₃C₂Tₓ/MoS₂/SiNWs heterostructure demonstrates a remarkable photocurrent density of −0.10 mA/cm<sup>2</sup> at 0 V vs. RHE and an incident photon-to-current efficiency (IPCE) of 38.12 %, nearly doubling the performance of conventional MoS₂/SiNWs photocathodes. Additionally, it achieves an 80.80 % degradation of methylene blue (MB), reducing total organic carbon (TOC) to 1.52 mg/mL, while sustaining a hydrogen evolution rate of 9.32 μmol/h at −0.75 V vs. RHE. Electrochemical impedance spectroscopy (EIS) reveals an ultra-low charge transfer resistance of 102 Ω, confirming the enhanced charge separation and suppressed recombination losses. Mechanistic studies establish an S-scheme charge transfer pathway, where Ti₃C₂Tₓ synergistically promotes electron transport while facilitating reactive oxygen species (ROS)-driven organic degradation. This work advances the frontier of multifunctional PEC photocathodes by providing a scalable, high-efficiency platform for simultaneous sustainable hydrogen production and environmental remediation.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"182 ","pages":"Article 115552"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700325016697","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and durable photocathodes for integrated hydrogen generation and wastewater treatment remains a critical challenge in photoelectrochemical (PEC) systems. This study pioneers a Ti₃C₂Tₓ MXene-engineered MoS₂/SiNWs photocathode, leveraging the superior charge transport, catalytic activity, and stability of MXenes to address the persistent limitations of MoS₂-based systems. The optimized Ti₃C₂Tₓ/MoS₂/SiNWs heterostructure demonstrates a remarkable photocurrent density of −0.10 mA/cm2 at 0 V vs. RHE and an incident photon-to-current efficiency (IPCE) of 38.12 %, nearly doubling the performance of conventional MoS₂/SiNWs photocathodes. Additionally, it achieves an 80.80 % degradation of methylene blue (MB), reducing total organic carbon (TOC) to 1.52 mg/mL, while sustaining a hydrogen evolution rate of 9.32 μmol/h at −0.75 V vs. RHE. Electrochemical impedance spectroscopy (EIS) reveals an ultra-low charge transfer resistance of 102 Ω, confirming the enhanced charge separation and suppressed recombination losses. Mechanistic studies establish an S-scheme charge transfer pathway, where Ti₃C₂Tₓ synergistically promotes electron transport while facilitating reactive oxygen species (ROS)-driven organic degradation. This work advances the frontier of multifunctional PEC photocathodes by providing a scalable, high-efficiency platform for simultaneous sustainable hydrogen production and environmental remediation.

Abstract Image

Ti₃C₂Tₓ-工程MoS₂/SiNWs多功能光电阴极用于光电化学制氢和废水修复
开发高效耐用的光电阴极用于集成制氢和废水处理仍然是光电化学(PEC)系统的关键挑战。这项研究开创了Ti₃C₂TₓMXenes工程MoS₂/SiNWs光电阴极,利用MXenes优越的电荷传输、催化活性和稳定性来解决MoS₂基系统的持续局限性。优化后的Ti₃C₂Tₓ/MoS₂/SiNWs异质结构在0 V时光电流密度为−0.10 mA/cm2,入射光子电流效率(IPCE)为38.12%,几乎是传统MoS₂/SiNWs光电阴极的两倍。对亚甲基蓝(MB)的降解率为80.80%,总有机碳(TOC)降至1.52 mg/mL,在−0.75 V时,析氢速率为9.32 μmol/h。电化学阻抗谱(EIS)显示了102 Ω的超低电荷转移电阻,证实了增强的电荷分离和抑制的复合损失。机理研究建立了S-scheme电荷转移途径,其中Ti₃C₂Tₓ协同促进电子传递,同时促进活性氧(ROS)驱动的有机降解。这项工作通过为同时可持续制氢和环境修复提供可扩展,高效的平台,推进了多功能PEC光电阴极的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信