Elizabeth Tenorio-Garcia , Siavash Soltanahmadi , Jens Saalbrink , Jose C. Bonilla , Michael Rappolt , Elena Simone , Anwesha Sarkar
{"title":"Tribology of dual Pickering double emulsions: Machine learning-aided inner droplet analysis","authors":"Elizabeth Tenorio-Garcia , Siavash Soltanahmadi , Jens Saalbrink , Jose C. Bonilla , Michael Rappolt , Elena Simone , Anwesha Sarkar","doi":"10.1016/j.foodhyd.2025.112035","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the tribological performance of Pickering water-in-oil emulsions and dual Pickering water-in-oil-in-water double emulsions (DEs) stabilized with particles at both the interfaces. W/O emulsions were stabilized by cocoa butter-based oleogel (CBolg) crystals, while DEs incorporating these emulsions were stabilized by whey protein microgels (WPM). The influence of temperature (21 and 37 °C) and surface texture (smooth <em>vs</em> biomimetic tongue-like surface) were investigated in tribology of W/O emulsions (30–60 % v/v water) and DEs (with 20 and 60 wt% W/O phase). In smooth surfaces, CBolg played a critical role in reducing the friction coefficient (<em>μ</em>) primarily via a fat-driven lubrication mechanism that was temperature dependent. While in DEs, smaller oil droplets encapsulating water provided similar lubrication to oil-based systems until starvation occurred. Strikingly, the water content in W/O emulsions exhibited distinct differences between emulsion systems within the biomimetic tongue-like surfaces, demonstrating lower lubricity at higher water concentration. Confocal microscopy images analyzed using Machine Learning (ML)-supported droplet segmentation enabled a more precise evaluation of structural changes within DEs when subjected to tribological stress. We demonstrated that although changes in inner droplet size altered in DEs, their contribution to the overall lubrication performance was minimal, due to their limited entrainment. Of more importance, the tribological performance was governed by the WPM with minimal influence from the droplet-entrained phenomena. These fundamental insights highlight the relevance of structured water in understanding frictional performance in emulsified systems, with structural integrity, composition, and topography of the tribological surface emerging as key factors.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"172 ","pages":"Article 112035"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25009956","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the tribological performance of Pickering water-in-oil emulsions and dual Pickering water-in-oil-in-water double emulsions (DEs) stabilized with particles at both the interfaces. W/O emulsions were stabilized by cocoa butter-based oleogel (CBolg) crystals, while DEs incorporating these emulsions were stabilized by whey protein microgels (WPM). The influence of temperature (21 and 37 °C) and surface texture (smooth vs biomimetic tongue-like surface) were investigated in tribology of W/O emulsions (30–60 % v/v water) and DEs (with 20 and 60 wt% W/O phase). In smooth surfaces, CBolg played a critical role in reducing the friction coefficient (μ) primarily via a fat-driven lubrication mechanism that was temperature dependent. While in DEs, smaller oil droplets encapsulating water provided similar lubrication to oil-based systems until starvation occurred. Strikingly, the water content in W/O emulsions exhibited distinct differences between emulsion systems within the biomimetic tongue-like surfaces, demonstrating lower lubricity at higher water concentration. Confocal microscopy images analyzed using Machine Learning (ML)-supported droplet segmentation enabled a more precise evaluation of structural changes within DEs when subjected to tribological stress. We demonstrated that although changes in inner droplet size altered in DEs, their contribution to the overall lubrication performance was minimal, due to their limited entrainment. Of more importance, the tribological performance was governed by the WPM with minimal influence from the droplet-entrained phenomena. These fundamental insights highlight the relevance of structured water in understanding frictional performance in emulsified systems, with structural integrity, composition, and topography of the tribological surface emerging as key factors.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.