Constrained reduced-order modeling of reacting flows using bounded Gaussian process likelihoods: application to a furnace operating under MILD conditions

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Muhammad Azam Hafeez , Alberto Procacci , Axel Coussement , Alessandro Parente
{"title":"Constrained reduced-order modeling of reacting flows using bounded Gaussian process likelihoods: application to a furnace operating under MILD conditions","authors":"Muhammad Azam Hafeez ,&nbsp;Alberto Procacci ,&nbsp;Axel Coussement ,&nbsp;Alessandro Parente","doi":"10.1016/j.proci.2025.105846","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of a novel constrained reduced-order modeling framework to analyze a furnace operating under Moderate and Intense Low-oxygen Dilution (MILD) combustion conditions. The methodology employs low-cost Singular Value Decomposition (lcSVD) with optimal sensor placement for data compression and reconstruction, followed by Gaussian Process Regression (GPR) with bounded likelihood functions – truncated Gaussian and beta distributions – to ensure physically admissible outputs in high-dimensional combustion simulations. We test these models by predicting the unexplored thermo-chemical states of three-dimensional CH<sub>4</sub>/H<sub>2</sub> simulation samples, with varying equivalence ratio, fuel composition (ranging from pure methane to pure hydrogen), and air injector diameter. Results indicate that the beta likelihood constrains species mass fraction predictions to the <span><math><mn>0</mn></math></span>–<span><math><mn>1</mn></math></span> interval by construction, yielding higher accuracy for species with localized distributions. Meanwhile, the truncated Gaussian enhances robustness by respecting realistic thermo-chemical ranges, reducing the influence of outliers, and improving model reliability in sparse or noisy data regions. These models demonstrate computational efficiency and scalability while delivering high-accuracy, physically consistent predictions.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105846"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000604","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of a novel constrained reduced-order modeling framework to analyze a furnace operating under Moderate and Intense Low-oxygen Dilution (MILD) combustion conditions. The methodology employs low-cost Singular Value Decomposition (lcSVD) with optimal sensor placement for data compression and reconstruction, followed by Gaussian Process Regression (GPR) with bounded likelihood functions – truncated Gaussian and beta distributions – to ensure physically admissible outputs in high-dimensional combustion simulations. We test these models by predicting the unexplored thermo-chemical states of three-dimensional CH4/H2 simulation samples, with varying equivalence ratio, fuel composition (ranging from pure methane to pure hydrogen), and air injector diameter. Results indicate that the beta likelihood constrains species mass fraction predictions to the 01 interval by construction, yielding higher accuracy for species with localized distributions. Meanwhile, the truncated Gaussian enhances robustness by respecting realistic thermo-chemical ranges, reducing the influence of outliers, and improving model reliability in sparse or noisy data regions. These models demonstrate computational efficiency and scalability while delivering high-accuracy, physically consistent predictions.
使用有界高斯过程似然的反应流的约束降阶建模:在轻度条件下运行的炉上的应用
本研究探索了一种新的约束降阶建模框架的应用,以分析在中度和强烈低氧稀释(MILD)燃烧条件下运行的炉。该方法采用低成本的奇异值分解(lcSVD)和最佳传感器位置来进行数据压缩和重建,然后采用高斯过程回归(GPR)和有界似然函数(截断高斯分布和beta分布)来确保高维燃烧模拟中物理上可接受的输出。我们通过预测三维CH4/H2模拟样品未探索的热化学状态来测试这些模型,这些样品具有不同的当量比,燃料成分(从纯甲烷到纯氢)和空气喷射器直径。结果表明,β似然通过构造将物种质量分数预测限制在0-1区间内,对于局域分布的物种,预测精度较高。同时,截断的高斯分布通过尊重真实的热化学范围、减少异常值的影响以及提高模型在稀疏或有噪声数据区域的可靠性来增强鲁棒性。这些模型展示了计算效率和可扩展性,同时提供高精度、物理一致的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信