{"title":"Co-assembling de novo designed peptide with high-payload drug protein for noninvasive treatment of corneal neovascularization","authors":"Yuhua Tong , Sijie Zhou , Yongjie Guo , Xiaoli Jin , Meiting Yu , Chunyun Feng , Hao Chen , Xingjie Zan , Jinyang Li","doi":"10.1016/j.ijpx.2025.100410","DOIUrl":null,"url":null,"abstract":"<div><div>The specificity and low toxicity of protein drugs are significant for disease treatment but are strongly limited by their weak tissue penetrative capacity. Although formulating proteins with nanoparticle is an alternative strategy, the low encapsulation efficiency (EE) and loading capacity (LC) of protein drugs and their potential for protein inactivation remain significant challenges. Herein, the de novo designed peptide (Arg-His-Cys-Arg-His-Cys-Arg-His-Cys) (RHC)<sub>3</sub>, zinc ions (Zn<sup>2+</sup>), and the anti-neovascular protein drug Bevacizumab (Beva) were co-assembled to form PZA@Beva (peptide and Zn<sup>2+</sup> assemblies encaspsulated Beva) nanomedicine, aiming to overcome the challenges associated with corneal neovascularization (CNV) model. The optimized size of PZA@Beva is approximately 162.5 nm, with EE% and LC% of Beva 92.7 % and 55.8 %, respectively. The bioactivity of encapsulated Beva was preserved, protecting it from proteolytic degradation, and the release of Beva from PZA@Beva exhibited pH-dependent kinetics. In vitro, PZA@Beva demonstrated effective penetration across the ocular barrier via both the paracellular pathway (by opening corneal tight junctions) and the transcellular pathway (through rapid cellular endocytosis). Additionally, PZA@Beva exhibited no cytotoxicity in vitro or in vivo, coupled with prolonged ocular retention, collectively yielding promising results for the treatment of CNV. This study contributes to non-invasive protein delivery across ocular bio-barriers for the treatment of diseases in the anterior segment.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100410"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000957","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The specificity and low toxicity of protein drugs are significant for disease treatment but are strongly limited by their weak tissue penetrative capacity. Although formulating proteins with nanoparticle is an alternative strategy, the low encapsulation efficiency (EE) and loading capacity (LC) of protein drugs and their potential for protein inactivation remain significant challenges. Herein, the de novo designed peptide (Arg-His-Cys-Arg-His-Cys-Arg-His-Cys) (RHC)3, zinc ions (Zn2+), and the anti-neovascular protein drug Bevacizumab (Beva) were co-assembled to form PZA@Beva (peptide and Zn2+ assemblies encaspsulated Beva) nanomedicine, aiming to overcome the challenges associated with corneal neovascularization (CNV) model. The optimized size of PZA@Beva is approximately 162.5 nm, with EE% and LC% of Beva 92.7 % and 55.8 %, respectively. The bioactivity of encapsulated Beva was preserved, protecting it from proteolytic degradation, and the release of Beva from PZA@Beva exhibited pH-dependent kinetics. In vitro, PZA@Beva demonstrated effective penetration across the ocular barrier via both the paracellular pathway (by opening corneal tight junctions) and the transcellular pathway (through rapid cellular endocytosis). Additionally, PZA@Beva exhibited no cytotoxicity in vitro or in vivo, coupled with prolonged ocular retention, collectively yielding promising results for the treatment of CNV. This study contributes to non-invasive protein delivery across ocular bio-barriers for the treatment of diseases in the anterior segment.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.