A self-delivery albumin nanomedicine amplified photodynamic therapy against esophageal cancer through COX-2/PGE2 interruption and regulation of mitochondrial respiratory
{"title":"A self-delivery albumin nanomedicine amplified photodynamic therapy against esophageal cancer through COX-2/PGE2 interruption and regulation of mitochondrial respiratory","authors":"Shiying Xu , Lina Wu , Boxin Chen , Xiaoliang Deng , Zhihui Zheng , Fei Wu , Lingjun Zeng , Changqing Zheng , Xiaomu Hu , Aiwen Huang , Xin Zhou , Xianquan Feng , Zhihong Liu","doi":"10.1016/j.ijpx.2025.100407","DOIUrl":null,"url":null,"abstract":"<div><div>Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment due to its selective tumor ablation and excellent safety characteristics. However, its efficacy is limited by tumor hypoxia and excessive inflammation. In this study, we fabricated human serum albumin-based nanoparticles (CAI NPs) encapsulating celecoxib (CXB), atovaquone (ATO), and IR820 <em>via</em> sonication. The CAI NPs exhibited favorable physicochemical properties, including a uniform size distribution (<200 nm), high encapsulation efficiency and excellent colloidal stability. Initially, ATO acts as a mitochondrial complex III inhibitor, suppressing oxidative phosphorylation to ameliorate tumor hypoxia. This hypoxia alleviation potentiates PDT efficacy by enhancing tumor cell ROS generation. Furthermore, concomitant COX-2/PGE2 inhibition by CXB attenuates the excessive inflammatory cascade triggered during PDT, resulting in enhanced therapeutic outcomes through microenvironment modulation. Eventually, the dual-enhanced CAI NPs demonstrate potent antitumor activity in both <em>in vivo</em> and <em>ex vivo</em> models, while maintaining excellent biocompatibility under physiological conditions. In summary, the integrated three-drug regimen conclusively enhances photodynamic therapeutic outcomes through multimodal mechanisms, establishing a viable treatment approach for esophageal cancer.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100407"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment due to its selective tumor ablation and excellent safety characteristics. However, its efficacy is limited by tumor hypoxia and excessive inflammation. In this study, we fabricated human serum albumin-based nanoparticles (CAI NPs) encapsulating celecoxib (CXB), atovaquone (ATO), and IR820 via sonication. The CAI NPs exhibited favorable physicochemical properties, including a uniform size distribution (<200 nm), high encapsulation efficiency and excellent colloidal stability. Initially, ATO acts as a mitochondrial complex III inhibitor, suppressing oxidative phosphorylation to ameliorate tumor hypoxia. This hypoxia alleviation potentiates PDT efficacy by enhancing tumor cell ROS generation. Furthermore, concomitant COX-2/PGE2 inhibition by CXB attenuates the excessive inflammatory cascade triggered during PDT, resulting in enhanced therapeutic outcomes through microenvironment modulation. Eventually, the dual-enhanced CAI NPs demonstrate potent antitumor activity in both in vivo and ex vivo models, while maintaining excellent biocompatibility under physiological conditions. In summary, the integrated three-drug regimen conclusively enhances photodynamic therapeutic outcomes through multimodal mechanisms, establishing a viable treatment approach for esophageal cancer.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.