Pablo D. Tagle-Salazar , Luisa F. Cabeza , Cristina Prieto
{"title":"Advancing sensible heat storage: A novel transient heat transfer model for concrete-based TES modules for CSP applications","authors":"Pablo D. Tagle-Salazar , Luisa F. Cabeza , Cristina Prieto","doi":"10.1016/j.renene.2025.124558","DOIUrl":null,"url":null,"abstract":"<div><div>Concentrating solar power (CSP) plays a crucial role in renewable energy systems, offering high-temperature heat for electricity generation and industrial processes while supporting the transition to sustainable energy. Thermal energy storage (TES) improves the reliability and dispatchability of CSP systems. Among the sensible heat storage options, concrete emerges as a cost-effective and eco-friendly alternative that warrants further investigation. This study introduces a comprehensive mathematical model for simulating the transient thermal behaviour of concrete-based TES modules. The model accommodates diverse geometries, supports a wide range of heat transfer fluids (HTFs) in all flow regimes, and accounts for heat losses to the environment, factors that are often overlooked in prior research. The mathematical framework was incorporated into a software platform called OpenModelica and will later be included in a tool developed by the authors to evaluate the performance of CSP plants. Before this integration takes place, the model undergoes validation, which is the primary focus of this study. The model was validated through two case studies, one theoretical and the other experimental, each involving different operational conditions, geometries, HTFs, and materials. The theoretical case confirmed that the model could capture the key physical phenomena governing transient heat transfer in the storage module. A comparison between the simulation results and experimental data revealed a strong agreement in temperature, heat flow, and total energy transmitted, with temperature errors within the IEC 60751 standard and total energy transfer errors ranging from −6.15 % to +5.69 %. These findings highlight the potential of concrete-based TES to enhance the performance of CSP systems, contributing to reliable and sustainable energy solutions.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"256 ","pages":"Article 124558"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125022220","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Concentrating solar power (CSP) plays a crucial role in renewable energy systems, offering high-temperature heat for electricity generation and industrial processes while supporting the transition to sustainable energy. Thermal energy storage (TES) improves the reliability and dispatchability of CSP systems. Among the sensible heat storage options, concrete emerges as a cost-effective and eco-friendly alternative that warrants further investigation. This study introduces a comprehensive mathematical model for simulating the transient thermal behaviour of concrete-based TES modules. The model accommodates diverse geometries, supports a wide range of heat transfer fluids (HTFs) in all flow regimes, and accounts for heat losses to the environment, factors that are often overlooked in prior research. The mathematical framework was incorporated into a software platform called OpenModelica and will later be included in a tool developed by the authors to evaluate the performance of CSP plants. Before this integration takes place, the model undergoes validation, which is the primary focus of this study. The model was validated through two case studies, one theoretical and the other experimental, each involving different operational conditions, geometries, HTFs, and materials. The theoretical case confirmed that the model could capture the key physical phenomena governing transient heat transfer in the storage module. A comparison between the simulation results and experimental data revealed a strong agreement in temperature, heat flow, and total energy transmitted, with temperature errors within the IEC 60751 standard and total energy transfer errors ranging from −6.15 % to +5.69 %. These findings highlight the potential of concrete-based TES to enhance the performance of CSP systems, contributing to reliable and sustainable energy solutions.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.