{"title":"On effect of anisotropy on anti-plane shear waves in elastic monoclinic half-space and plates","authors":"Gennadi I. Mikhasev , Victor A. Eremeyev","doi":"10.1016/j.ijengsci.2025.104392","DOIUrl":null,"url":null,"abstract":"<div><div>Within the context of linear surface elasticity, we discuss the propagation of anti-plane surface waves, taking into account the anisotropy of the material. Here, we consider one of the most general crystal systems in the bulk, i.e. monoclinic symmetry. For the free surface, however, we consider rectangular symmetry. We derived the dispersion relations for three structures with surface energy: a half-space with a free surface; a layer of finite thickness; and a two-layered half-space. Surprisingly, these coincide with their isotropic counterparts, differing only in notation. Conversely, the anisotropy of the material in the bulk affects the displacement decay with depth. The pure exponential decay of displacements with the depth now transforms into decay with oscillations.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"217 ","pages":"Article 104392"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525001788","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Within the context of linear surface elasticity, we discuss the propagation of anti-plane surface waves, taking into account the anisotropy of the material. Here, we consider one of the most general crystal systems in the bulk, i.e. monoclinic symmetry. For the free surface, however, we consider rectangular symmetry. We derived the dispersion relations for three structures with surface energy: a half-space with a free surface; a layer of finite thickness; and a two-layered half-space. Surprisingly, these coincide with their isotropic counterparts, differing only in notation. Conversely, the anisotropy of the material in the bulk affects the displacement decay with depth. The pure exponential decay of displacements with the depth now transforms into decay with oscillations.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.