{"title":"CO2-Driven Polarity Compensation Mechanism for Stabilizing High-Index Facets in KTaO3","authors":"Yuning Liang, Bo Gao, Yonglong Zhu, Qun Xu","doi":"10.1002/smll.202510040","DOIUrl":null,"url":null,"abstract":"In ionic crystals, the simultaneous control of polarity compensation and exposure of high-crystallinity surfaces has long been a critical bottleneck for modulating their interfacial electronic and spin properties. Using the typical ionic crystal KTaO<sub>3</sub> (KTO) as a model system, it is demonstrated that supercritical carbon dioxide (SC CO<sub>2</sub>) treatment is an effective solution to this challenge. As the SC CO<sub>2</sub> pressure increases from 12 to 20 MPa, the surface of KTO gradually transforms from a rough, low-index (001) facet into high-crystallinity, high-index polar facets, specifically (<span data-altimg=\"/cms/asset/1a106bc5-3d0b-4587-8ae7-5418b7f898ef/smll71048-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/smll71048-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 1 With bar 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow><mjx-mover data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16136810:media:smll71048:smll71048-math-0001\" display=\"inline\" location=\"graphic/smll71048-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 1 With bar 1\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></mrow>$0{{\\bar 11}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), (<span data-altimg=\"/cms/asset/675ab245-97ad-4104-80da-a6ce841bd520/smll71048-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/smll71048-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 2 With bar 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow><mjx-mover data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16136810:media:smll71048:smll71048-math-0002\" display=\"inline\" location=\"graphic/smll71048-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 2 With bar 1\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn><mo data-semantic-=\"\" data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></mrow>$0{{\\bar 21}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), and (111). Density functional theory (DFT) calculations indicate that this transformation primarily arises from the lower adsorption energy of CO<sub>2</sub> on high-index facets, making these CO<sub>2</sub>-adsorbed high-index surfaces thermodynamically more stable. Notably, CO<sub>2</sub> induces magnetic moments via polarity compensation mechanisms without introducing oxygen vacancies (O<sub>v</sub>), thereby enhancing macroscopic magnetism with increasing pressure. This finding challenges the conventional view that magnetic moments in nominally nonmagnetic oxides are induced solely by O<sub>v</sub>. Therefore, the research demonstrates that SC CO<sub>2</sub>, as a green and scalable treatment strategy, can expose high-crystallinity, high-index facets through polarity compensation, thus offering a versatile platform for oxide facet engineering and polarity compensation studies.","PeriodicalId":228,"journal":{"name":"Small","volume":"39 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202510040","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In ionic crystals, the simultaneous control of polarity compensation and exposure of high-crystallinity surfaces has long been a critical bottleneck for modulating their interfacial electronic and spin properties. Using the typical ionic crystal KTaO3 (KTO) as a model system, it is demonstrated that supercritical carbon dioxide (SC CO2) treatment is an effective solution to this challenge. As the SC CO2 pressure increases from 12 to 20 MPa, the surface of KTO gradually transforms from a rough, low-index (001) facet into high-crystallinity, high-index polar facets, specifically (), (), and (111). Density functional theory (DFT) calculations indicate that this transformation primarily arises from the lower adsorption energy of CO2 on high-index facets, making these CO2-adsorbed high-index surfaces thermodynamically more stable. Notably, CO2 induces magnetic moments via polarity compensation mechanisms without introducing oxygen vacancies (Ov), thereby enhancing macroscopic magnetism with increasing pressure. This finding challenges the conventional view that magnetic moments in nominally nonmagnetic oxides are induced solely by Ov. Therefore, the research demonstrates that SC CO2, as a green and scalable treatment strategy, can expose high-crystallinity, high-index facets through polarity compensation, thus offering a versatile platform for oxide facet engineering and polarity compensation studies.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.