CO2-Driven Polarity Compensation Mechanism for Stabilizing High-Index Facets in KTaO3

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-03 DOI:10.1002/smll.202510040
Yuning Liang, Bo Gao, Yonglong Zhu, Qun Xu
{"title":"CO2-Driven Polarity Compensation Mechanism for Stabilizing High-Index Facets in KTaO3","authors":"Yuning Liang, Bo Gao, Yonglong Zhu, Qun Xu","doi":"10.1002/smll.202510040","DOIUrl":null,"url":null,"abstract":"In ionic crystals, the simultaneous control of polarity compensation and exposure of high-crystallinity surfaces has long been a critical bottleneck for modulating their interfacial electronic and spin properties. Using the typical ionic crystal KTaO<sub>3</sub> (KTO) as a model system, it is demonstrated that supercritical carbon dioxide (SC CO<sub>2</sub>) treatment is an effective solution to this challenge. As the SC CO<sub>2</sub> pressure increases from 12 to 20 MPa, the surface of KTO gradually transforms from a rough, low-index (001) facet into high-crystallinity, high-index polar facets, specifically (<span data-altimg=\"/cms/asset/1a106bc5-3d0b-4587-8ae7-5418b7f898ef/smll71048-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/smll71048-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 1 With bar 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow><mjx-mover data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16136810:media:smll71048:smll71048-math-0001\" display=\"inline\" location=\"graphic/smll71048-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 1 With bar 1\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></mrow>$0{{\\bar 11}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), (<span data-altimg=\"/cms/asset/675ab245-97ad-4104-80da-a6ce841bd520/smll71048-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/smll71048-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 2 With bar 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow><mjx-mover data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; margin-bottom: -0.544em;\"><mjx-mo data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-stretchy-h style=\"width: 0.5em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:16136810:media:smll71048:smll71048-math-0002\" display=\"inline\" location=\"graphic/smll71048-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4\" data-semantic-content=\"7,5\" data-semantic-role=\"implicit\" data-semantic-speech=\"0 ModifyingAbove 2 With bar 1\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn><mo data-semantic-=\"\" data-semantic-parent=\"3\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">¯</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow></mrow>$0{{\\bar 21}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>), and (111). Density functional theory (DFT) calculations indicate that this transformation primarily arises from the lower adsorption energy of CO<sub>2</sub> on high-index facets, making these CO<sub>2</sub>-adsorbed high-index surfaces thermodynamically more stable. Notably, CO<sub>2</sub> induces magnetic moments via polarity compensation mechanisms without introducing oxygen vacancies (O<sub>v</sub>), thereby enhancing macroscopic magnetism with increasing pressure. This finding challenges the conventional view that magnetic moments in nominally nonmagnetic oxides are induced solely by O<sub>v</sub>. Therefore, the research demonstrates that SC CO<sub>2</sub>, as a green and scalable treatment strategy, can expose high-crystallinity, high-index facets through polarity compensation, thus offering a versatile platform for oxide facet engineering and polarity compensation studies.","PeriodicalId":228,"journal":{"name":"Small","volume":"39 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202510040","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In ionic crystals, the simultaneous control of polarity compensation and exposure of high-crystallinity surfaces has long been a critical bottleneck for modulating their interfacial electronic and spin properties. Using the typical ionic crystal KTaO3 (KTO) as a model system, it is demonstrated that supercritical carbon dioxide (SC CO2) treatment is an effective solution to this challenge. As the SC CO2 pressure increases from 12 to 20 MPa, the surface of KTO gradually transforms from a rough, low-index (001) facet into high-crystallinity, high-index polar facets, specifically (01¯1$0{{\bar 11}}$), (02¯1$0{{\bar 21}}$), and (111). Density functional theory (DFT) calculations indicate that this transformation primarily arises from the lower adsorption energy of CO2 on high-index facets, making these CO2-adsorbed high-index surfaces thermodynamically more stable. Notably, CO2 induces magnetic moments via polarity compensation mechanisms without introducing oxygen vacancies (Ov), thereby enhancing macroscopic magnetism with increasing pressure. This finding challenges the conventional view that magnetic moments in nominally nonmagnetic oxides are induced solely by Ov. Therefore, the research demonstrates that SC CO2, as a green and scalable treatment strategy, can expose high-crystallinity, high-index facets through polarity compensation, thus offering a versatile platform for oxide facet engineering and polarity compensation studies.

Abstract Image

二氧化碳驱动极性补偿机制稳定KTaO3高指数面
在离子晶体中,同时控制极性补偿和高结晶度表面的暴露一直是调节其界面电子和自旋特性的关键瓶颈。以典型离子晶体KTaO3 (KTO)为模型体系,证明了超临界二氧化碳(SC CO2)处理是解决这一挑战的有效方法。随着SC CO2压力从12 MPa增加到20 MPa, KTO表面逐渐从粗糙的低指数(001)面转变为高结晶度、高指数的极性面,具体表现为(0¹¹¹$0{{\bar 11}}$)、(0²¯¹$0{{\bar 21}}$)和(111)。密度泛函理论(DFT)计算表明,这种转变主要是由于CO2在高指数面上的吸附能较低,使得这些CO2吸附的高指数表面热力学更稳定。值得注意的是,CO2通过极性补偿机制诱导磁矩,而不引入氧空位(Ov),从而随着压力的增加增强宏观磁性。这一发现挑战了传统观点,即名义上非磁性氧化物的磁矩仅由Ov引起。因此,研究表明,SC CO2作为一种绿色、可扩展的处理策略,可以通过极性补偿暴露高结晶度、高指数的晶面,从而为氧化物晶面工程和极性补偿研究提供了一个通用的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信