Rapid scalable plasma processing of thin-film Li–La–Zr–O solid-state electrolytes

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-10-04 DOI:10.1016/j.matt.2025.102468
Gabriel Badillo Crane, Thomas W. Colburn, Sarah E. Holmes, Justus Just, Yi Cui, Reinhold H. Dauskardt
{"title":"Rapid scalable plasma processing of thin-film Li–La–Zr–O solid-state electrolytes","authors":"Gabriel Badillo Crane, Thomas W. Colburn, Sarah E. Holmes, Justus Just, Yi Cui, Reinhold H. Dauskardt","doi":"10.1016/j.matt.2025.102468","DOIUrl":null,"url":null,"abstract":"Solid-state electrolytes, such as lithium lanthanum zirconium oxide (LLZO), show promise as technologies for next-generation high-energy-density batteries, but commercial development has been hindered by a lack of scalable processing methods. Current fabrication methods are costly or require long annealing steps to create dense films. We report an atmospheric pressure blown-arc nitrogen plasma jet process to rapidly form sub-micrometer-thick, dense amorphous LLZO (a-LLZO) films from sol-gel precursors. Films are processed in less than 2 min, an order of magnitude faster than what has previously been reported. We demonstrate 500-nm-thick a-LLZO films processed at 350°C with an ionic conductivity of 2 × 10<sup>−6</sup> S/cm at 30°C and 2 × 10<sup>−3</sup> S/cm at 100°C and a conductance of 19 S at 100°C, the highest conductance of any LLZO phase to date. The films exhibit outstanding smooth surface morphology with low defectivity, advancing atmospheric plasma processing as a scalable processing method for solid-state electrolytes.","PeriodicalId":388,"journal":{"name":"Matter","volume":"260 1","pages":""},"PeriodicalIF":17.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102468","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes, such as lithium lanthanum zirconium oxide (LLZO), show promise as technologies for next-generation high-energy-density batteries, but commercial development has been hindered by a lack of scalable processing methods. Current fabrication methods are costly or require long annealing steps to create dense films. We report an atmospheric pressure blown-arc nitrogen plasma jet process to rapidly form sub-micrometer-thick, dense amorphous LLZO (a-LLZO) films from sol-gel precursors. Films are processed in less than 2 min, an order of magnitude faster than what has previously been reported. We demonstrate 500-nm-thick a-LLZO films processed at 350°C with an ionic conductivity of 2 × 10−6 S/cm at 30°C and 2 × 10−3 S/cm at 100°C and a conductance of 19 S at 100°C, the highest conductance of any LLZO phase to date. The films exhibit outstanding smooth surface morphology with low defectivity, advancing atmospheric plasma processing as a scalable processing method for solid-state electrolytes.

Abstract Image

薄膜Li-La-Zr-O固态电解质的快速可扩展等离子体处理
固态电解质,如氧化锂镧锆(LLZO),有望成为下一代高能量密度电池的技术,但由于缺乏可扩展的加工方法,其商业发展一直受到阻碍。目前的制造方法是昂贵的,或者需要很长的退火步骤来制造致密的薄膜。我们报道了一种常压吹弧氮气等离子体喷射工艺,可以从溶胶-凝胶前驱体快速形成亚微米厚的致密无定形LLZO (a-LLZO)薄膜。胶片的处理时间不到2分钟,比之前报道的要快一个数量级。我们展示了在350°C下处理的500纳米厚的a-LLZO薄膜,在30°C和100°C下的离子电导率分别为2 × 10 - 6 S/cm和2 × 10 - 3 S/cm,在100°C下的电导率为19 S,是迄今为止任何LLZO相的最高电导率。该薄膜具有出色的光滑表面形态和低缺陷,推动了大气等离子体处理作为固态电解质的可扩展处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信