Intramolecular Noncovalent Interaction‐Driven Syn‐/Anti‐Conformational Regulation in Nonfused‐Ring Electron Acceptors

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sixuan Wang, Siying Wang, Rui Zeng, Yuqi Hou, Xiaobin Gu, Ziyang Han, Jikai Lv, Na Yu, Jiawei Qiao, Zheng Tang, Xiaotao Hao, Qian Peng, Feng Liu, Yunhao Cai, Xin Zhang, Hui Huang
{"title":"Intramolecular Noncovalent Interaction‐Driven Syn‐/Anti‐Conformational Regulation in Nonfused‐Ring Electron Acceptors","authors":"Sixuan Wang, Siying Wang, Rui Zeng, Yuqi Hou, Xiaobin Gu, Ziyang Han, Jikai Lv, Na Yu, Jiawei Qiao, Zheng Tang, Xiaotao Hao, Qian Peng, Feng Liu, Yunhao Cai, Xin Zhang, Hui Huang","doi":"10.1002/anie.202513603","DOIUrl":null,"url":null,"abstract":"Molecular conformation is a critical structural attribute of organic molecules and polymers in addition to their constitution and configuration, thereby forming the foundation for understanding macroscopic material properties and device functionality. For nonfused‐ring electron acceptors (NFREAs) featuring multiple σ‐bonds with high rotational degrees of freedom, significant challenges remain in precisely regulating molecular conformation, particularly in modulating the <jats:italic>syn</jats:italic>‐ and <jats:italic>anti</jats:italic>‐conformation preferences. Here, we demonstrate precise engineering of NFREAs through conformation‐directed molecular design, achieving a <jats:italic>syn</jats:italic>‐to‐<jats:italic>anti</jats:italic>‐conformational transition via utilizing intramolecular noncovalent S···F interactions. This conformational regulation strategy enables a systematic investigation of how <jats:italic>syn</jats:italic>‐/<jats:italic>anti</jats:italic>‐conformational preferences influence molecular planarity and rigidity, self‐assembly behavior, charge transport properties, and device performance. Our results reveal that the <jats:italic>anti</jats:italic>‐conformation endows <jats:italic>anti</jats:italic>‐TT‐F with enhanced crystallinity, reduced reorganization energy, and improved charge carrier mobility compared to its <jats:italic>syn</jats:italic>‐conformational counterpart. Consequently, binary and ternary devices based on <jats:italic>anti</jats:italic>‐TT‐F achieve remarkable power conversion efficiencies of 15.08% and 19.88%, respectively. This conformational engineering strategy unveils a previously overlooked dimension in molecular design, providing fundamental guidelines for developing high‐performance organic solar cells through the rational manipulation of conformational landscapes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"110 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513603","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular conformation is a critical structural attribute of organic molecules and polymers in addition to their constitution and configuration, thereby forming the foundation for understanding macroscopic material properties and device functionality. For nonfused‐ring electron acceptors (NFREAs) featuring multiple σ‐bonds with high rotational degrees of freedom, significant challenges remain in precisely regulating molecular conformation, particularly in modulating the syn‐ and anti‐conformation preferences. Here, we demonstrate precise engineering of NFREAs through conformation‐directed molecular design, achieving a syn‐to‐anti‐conformational transition via utilizing intramolecular noncovalent S···F interactions. This conformational regulation strategy enables a systematic investigation of how syn‐/anti‐conformational preferences influence molecular planarity and rigidity, self‐assembly behavior, charge transport properties, and device performance. Our results reveal that the anti‐conformation endows anti‐TT‐F with enhanced crystallinity, reduced reorganization energy, and improved charge carrier mobility compared to its syn‐conformational counterpart. Consequently, binary and ternary devices based on anti‐TT‐F achieve remarkable power conversion efficiencies of 15.08% and 19.88%, respectively. This conformational engineering strategy unveils a previously overlooked dimension in molecular design, providing fundamental guidelines for developing high‐performance organic solar cells through the rational manipulation of conformational landscapes.
非熔合环电子受体分子内非共价相互作用驱动的顺/反构象调节
分子构象是有机分子和聚合物除了其组成和构型之外的一个重要结构属性,从而形成了理解宏观材料性质和器件功能的基础。对于具有多个高旋转自由度σ键的非熔合环电子受体(NFREAs),在精确调节分子构象方面仍然存在重大挑战,特别是在调节顺和反构象偏好方面。在这里,我们通过定向构象的分子设计展示了NFREAs的精确工程,通过利用分子内非共价S···F相互作用实现了顺构象到反构象的转变。这种构象调节策略可以系统地研究顺/反构象偏好如何影响分子的平面度和刚度、自组装行为、电荷输运性质和器件性能。我们的研究结果表明,与同构象相比,反构象使反TT - F具有更高的结晶度、更低的重组能和更高的载流子迁移率。因此,基于anti - TT - F的二元和三元器件的功率转换效率分别达到15.08%和19.88%。这种构象工程策略揭示了分子设计中以前被忽视的一个维度,为通过合理操纵构象景观来开发高性能有机太阳能电池提供了基本指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信