{"title":"A genetic map of human metabolism across the allele frequency spectrum.","authors":"Martijn Zoodsma,Carl Beuchel,Summaira Yasmeen,Leonhard Kohleick,Aakash Nepal,Mine Koprulu,Florian Kronenberg,Manuel Mayr,Alice Williamson,Maik Pietzner,Claudia Langenberg","doi":"10.1038/s41588-025-02355-3","DOIUrl":null,"url":null,"abstract":"Genetic studies of human metabolism have been limited in scale and allelic breadth. Here we provide a data-driven map of the genetic regulation of circulating small molecules and lipoprotein characteristics (249 traits) measured using proton nuclear magnetic resonance spectroscopy across the allele frequency spectrum in ~450,000 individuals. Trans-ancestral meta-analyses identify 29,824 locus-metabolite associations mapping to 753 regions with effects largely consistent between men and women and large ancestral groups represented in UK Biobank. We observe and classify extreme genetic pleiotropy, identify regulators of lipid metabolism, and assign effector genes at >100 loci through rare-to-common allelic series. We propose roles for genes less established in metabolic control (for example, SIDT2), genes characterized by phenotypic heterogeneity (for example, APOA1) and genes with specific disease relevance (for example, VEGFA). Our study demonstrates the value of broad, large-scale metabolomic phenotyping to identify and characterize regulators of human metabolism.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"28 1","pages":""},"PeriodicalIF":29.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02355-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic studies of human metabolism have been limited in scale and allelic breadth. Here we provide a data-driven map of the genetic regulation of circulating small molecules and lipoprotein characteristics (249 traits) measured using proton nuclear magnetic resonance spectroscopy across the allele frequency spectrum in ~450,000 individuals. Trans-ancestral meta-analyses identify 29,824 locus-metabolite associations mapping to 753 regions with effects largely consistent between men and women and large ancestral groups represented in UK Biobank. We observe and classify extreme genetic pleiotropy, identify regulators of lipid metabolism, and assign effector genes at >100 loci through rare-to-common allelic series. We propose roles for genes less established in metabolic control (for example, SIDT2), genes characterized by phenotypic heterogeneity (for example, APOA1) and genes with specific disease relevance (for example, VEGFA). Our study demonstrates the value of broad, large-scale metabolomic phenotyping to identify and characterize regulators of human metabolism.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution