Atomic Coordination Regulation in Electronic Structure of Electrocatalysts

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-10-03 DOI:10.1002/smll.202509723
Hua Fan, Guangyao Zhao, Kaisheng Zou, Qimei Yang, Tangfei Zheng, Jian Wang, Wei Ding
{"title":"Atomic Coordination Regulation in Electronic Structure of Electrocatalysts","authors":"Hua Fan, Guangyao Zhao, Kaisheng Zou, Qimei Yang, Tangfei Zheng, Jian Wang, Wei Ding","doi":"10.1002/smll.202509723","DOIUrl":null,"url":null,"abstract":"The electronic structure of electrocatalysts is central to energy conversion processes, determining catalytic efficiency, intrinsic activity, and stability. Precise regulation of atomic‐level coordination environments optimizes this electronic structure. This review analyzes the interplay between electrocatalyst electronic structure and coordination configuration through energy‐level matching theory and the Sabatier principle. Leveraging advanced characterization techniques, diverse bonding motifs—including unsaturated bonds, surface self‐bonds, interfacial chemical bonds, and 2D bonds are examined—and elucidate their mechanisms for modulating electronic properties. These insights demonstrate how coordination chemistry control via electronic structure engineering enables rational design of high‐performance electrocatalysts. Integration of advanced catalyst architectures exploiting quantum confinement with machine‐learning‐guided design, alongside characterization tools dynamically linking electronic states to performance, will accelerate next‐generation electrocatalyst development.","PeriodicalId":228,"journal":{"name":"Small","volume":"99 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202509723","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic structure of electrocatalysts is central to energy conversion processes, determining catalytic efficiency, intrinsic activity, and stability. Precise regulation of atomic‐level coordination environments optimizes this electronic structure. This review analyzes the interplay between electrocatalyst electronic structure and coordination configuration through energy‐level matching theory and the Sabatier principle. Leveraging advanced characterization techniques, diverse bonding motifs—including unsaturated bonds, surface self‐bonds, interfacial chemical bonds, and 2D bonds are examined—and elucidate their mechanisms for modulating electronic properties. These insights demonstrate how coordination chemistry control via electronic structure engineering enables rational design of high‐performance electrocatalysts. Integration of advanced catalyst architectures exploiting quantum confinement with machine‐learning‐guided design, alongside characterization tools dynamically linking electronic states to performance, will accelerate next‐generation electrocatalyst development.
电催化剂电子结构中的原子配位调控
电催化剂的电子结构是能量转换过程的核心,决定了催化效率、内在活性和稳定性。原子级配位环境的精确调节优化了这种电子结构。本文通过能级匹配理论和萨巴蒂尔原理分析了电催化剂的电子结构与配位构型之间的相互作用。利用先进的表征技术,多种键基序-包括不饱和键,表面自键,界面化学键和2D键进行了检查-并阐明了它们调制电子性质的机制。这些见解证明了通过电子结构工程进行配位化学控制如何能够合理设计高性能电催化剂。利用量子约束的先进催化剂架构与机器学习指导设计的集成,以及动态连接电子状态与性能的表征工具,将加速下一代电催化剂的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信