Advancing Electronic Application of Coordination Solids: Enhancing Electron Transport and Device Integration via Surface‐Mounted MOFs (SURMOFs)

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhengtao Xu, Christof Wöll, Stefan Bräse
{"title":"Advancing Electronic Application of Coordination Solids: Enhancing Electron Transport and Device Integration via Surface‐Mounted MOFs (SURMOFs)","authors":"Zhengtao Xu, Christof Wöll, Stefan Bräse","doi":"10.1002/adfm.202425091","DOIUrl":null,"url":null,"abstract":"The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal–organic framework (SURMOF) platform, yields thin films with well‐defined orientation, tunable thickness, low density of defects, and editable crystalline heteroepitaxy. Such high‐quality thin films are suited for integrating metal‐organic framework (MOF) materials into devices used in electronics and optoelectronics technologies. However, the potential of the SURMOF platform has not been fully realized due to its instability, poor electronic interaction/transport, and limited intercalation/heteroepitaxy functions. Leveraging the longstanding efforts in processing and functionalizing coordination networks, four directions are highlighted for fully unleashing the technological potential of the SURMOF platform: 1) cascade cyclization to form polycyclic aromatic, nanographene‐like scaffolds with strong electron polarizability and electroactivity; 2) crosslinking by fused‐aromatic and metal–thiolate bridges for improved charge transport and structural stability; 3) covalent‐ionic heteroepitaxy of conductive metal–thiolate layers alternating with metal‐aqua‐hydroxide layers to emulate the transport layer and the charge storage layer in high‐temperature superconductors of cuprates and iron pnictides; and 4) machine learning (ML)‐based methods to optimize synthesis conditions.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"110 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425091","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal–organic framework (SURMOF) platform, yields thin films with well‐defined orientation, tunable thickness, low density of defects, and editable crystalline heteroepitaxy. Such high‐quality thin films are suited for integrating metal‐organic framework (MOF) materials into devices used in electronics and optoelectronics technologies. However, the potential of the SURMOF platform has not been fully realized due to its instability, poor electronic interaction/transport, and limited intercalation/heteroepitaxy functions. Leveraging the longstanding efforts in processing and functionalizing coordination networks, four directions are highlighted for fully unleashing the technological potential of the SURMOF platform: 1) cascade cyclization to form polycyclic aromatic, nanographene‐like scaffolds with strong electron polarizability and electroactivity; 2) crosslinking by fused‐aromatic and metal–thiolate bridges for improved charge transport and structural stability; 3) covalent‐ionic heteroepitaxy of conductive metal–thiolate layers alternating with metal‐aqua‐hydroxide layers to emulate the transport layer and the charge storage layer in high‐temperature superconductors of cuprates and iron pnictides; and 4) machine learning (ML)‐based methods to optimize synthesis conditions.
推进配位固体的电子应用:通过表面安装的mof (surmof)增强电子传输和器件集成
通过表面安装的金属有机框架(SURMOF)平台,层接层(LbL)的配位固体组装可以产生取向明确、厚度可调、缺陷密度低和可编辑的晶体异质外延的薄膜。这种高质量的薄膜适用于将金属有机框架(MOF)材料集成到电子和光电子技术中使用的器件中。然而,由于其不稳定性、较差的电子相互作用/输运以及有限的插层/异质外延功能,SURMOF平台的潜力尚未得到充分发挥。利用长期以来在协调网络处理和功能化方面的努力,重点强调了四个方向,以充分释放SURMOF平台的技术潜力:1)级联环化形成具有强电子极化性和电活性的多环芳香族纳米石墨烯类支架;2)通过熔融芳族和金属硫酸酯桥交联改善电荷输运和结构稳定性;3)导电金属-硫酸盐层与金属-氢氧化物层交替形成共价离子异质外延,模拟铜酸盐和铁酸盐高温超导体中的传输层和电荷存储层;4)基于机器学习(ML)的方法来优化合成条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信