The intrinsic time tracker: temporal context is embedded in entorhinal and hippocampal functional connectivity patterns.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jingyi Wang,Arielle Tambini,Laura Pritschet,Caitlin M Taylor,Emily G Jacobs,Regina C Lapate
{"title":"The intrinsic time tracker: temporal context is embedded in entorhinal and hippocampal functional connectivity patterns.","authors":"Jingyi Wang,Arielle Tambini,Laura Pritschet,Caitlin M Taylor,Emily G Jacobs,Regina C Lapate","doi":"10.1038/s41467-025-63633-6","DOIUrl":null,"url":null,"abstract":"Changes in task-evoked activity in the entorhinal cortex (EC) and hippocampus have been shown to track changes in temporal context at short and long timescales. However, whether spontaneous changes in EC and hippocampal neural signals-in the absence of task demands-likewise reflect the passage of time remains unknown. Here, we leveraged a dense-sampling study in which two individuals underwent daily resting-state fMRI for 30 days. Similarity in EC- and anterior hippocampal-whole-brain resting connectivity patterns was negatively correlated with the time interval between sessions, suggesting a spontaneous, slow-drifting neural signature of time. These changes could not be explained by other time-varying factors (including session-wise changes in mood, hormones, or motion). Hippocampal connectivity temporal drifts followed an anterior-to-posterior gradient, and anterolateral EC showed stronger temporal drift than posteromedial EC. Finally, posterior networks (including visual and default mode) primarily drove drifts in EC- and hippocampal-whole-brain connectivity over time. Collectively, these findings reveal a resting-state connectivity signature that reflects the passage of time in the absence of task demands and follows a functional gradient along the longitudinal axis of the hippocampus.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":"8817"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63633-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in task-evoked activity in the entorhinal cortex (EC) and hippocampus have been shown to track changes in temporal context at short and long timescales. However, whether spontaneous changes in EC and hippocampal neural signals-in the absence of task demands-likewise reflect the passage of time remains unknown. Here, we leveraged a dense-sampling study in which two individuals underwent daily resting-state fMRI for 30 days. Similarity in EC- and anterior hippocampal-whole-brain resting connectivity patterns was negatively correlated with the time interval between sessions, suggesting a spontaneous, slow-drifting neural signature of time. These changes could not be explained by other time-varying factors (including session-wise changes in mood, hormones, or motion). Hippocampal connectivity temporal drifts followed an anterior-to-posterior gradient, and anterolateral EC showed stronger temporal drift than posteromedial EC. Finally, posterior networks (including visual and default mode) primarily drove drifts in EC- and hippocampal-whole-brain connectivity over time. Collectively, these findings reveal a resting-state connectivity signature that reflects the passage of time in the absence of task demands and follows a functional gradient along the longitudinal axis of the hippocampus.
内在时间追踪器:时间背景嵌入内嗅和海马功能连接模式。
任务诱发活动在内嗅皮层(EC)和海马体中的变化已被证明在短时间和长时间尺度上跟踪时间背景的变化。然而,在没有任务需求的情况下,EC和海马体神经信号的自发变化是否同样反映了时间的流逝仍然未知。在这里,我们利用了一项密集抽样研究,其中两个人每天接受30天的静息状态功能磁共振成像。EC-和海马前部-全脑静息连接模式的相似性与会话之间的时间间隔呈负相关,表明时间是自发的、缓慢漂移的神经特征。这些变化不能用其他随时间变化的因素(包括会话中情绪、激素或运动的变化)来解释。海马连通性时间漂移遵循前后梯度,前外侧脑电时间漂移比后内侧脑电时间漂移更强。最后,随着时间的推移,后叶网络(包括视觉和默认模式)主要驱动EC-和海马-全脑连通性的漂移。总的来说,这些发现揭示了一个静息状态连接特征,它反映了在没有任务需求的情况下时间的流逝,并沿着海马体的纵轴遵循功能梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信