Jingyi Wang,Arielle Tambini,Laura Pritschet,Caitlin M Taylor,Emily G Jacobs,Regina C Lapate
{"title":"The intrinsic time tracker: temporal context is embedded in entorhinal and hippocampal functional connectivity patterns.","authors":"Jingyi Wang,Arielle Tambini,Laura Pritschet,Caitlin M Taylor,Emily G Jacobs,Regina C Lapate","doi":"10.1038/s41467-025-63633-6","DOIUrl":null,"url":null,"abstract":"Changes in task-evoked activity in the entorhinal cortex (EC) and hippocampus have been shown to track changes in temporal context at short and long timescales. However, whether spontaneous changes in EC and hippocampal neural signals-in the absence of task demands-likewise reflect the passage of time remains unknown. Here, we leveraged a dense-sampling study in which two individuals underwent daily resting-state fMRI for 30 days. Similarity in EC- and anterior hippocampal-whole-brain resting connectivity patterns was negatively correlated with the time interval between sessions, suggesting a spontaneous, slow-drifting neural signature of time. These changes could not be explained by other time-varying factors (including session-wise changes in mood, hormones, or motion). Hippocampal connectivity temporal drifts followed an anterior-to-posterior gradient, and anterolateral EC showed stronger temporal drift than posteromedial EC. Finally, posterior networks (including visual and default mode) primarily drove drifts in EC- and hippocampal-whole-brain connectivity over time. Collectively, these findings reveal a resting-state connectivity signature that reflects the passage of time in the absence of task demands and follows a functional gradient along the longitudinal axis of the hippocampus.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":"8817"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63633-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in task-evoked activity in the entorhinal cortex (EC) and hippocampus have been shown to track changes in temporal context at short and long timescales. However, whether spontaneous changes in EC and hippocampal neural signals-in the absence of task demands-likewise reflect the passage of time remains unknown. Here, we leveraged a dense-sampling study in which two individuals underwent daily resting-state fMRI for 30 days. Similarity in EC- and anterior hippocampal-whole-brain resting connectivity patterns was negatively correlated with the time interval between sessions, suggesting a spontaneous, slow-drifting neural signature of time. These changes could not be explained by other time-varying factors (including session-wise changes in mood, hormones, or motion). Hippocampal connectivity temporal drifts followed an anterior-to-posterior gradient, and anterolateral EC showed stronger temporal drift than posteromedial EC. Finally, posterior networks (including visual and default mode) primarily drove drifts in EC- and hippocampal-whole-brain connectivity over time. Collectively, these findings reveal a resting-state connectivity signature that reflects the passage of time in the absence of task demands and follows a functional gradient along the longitudinal axis of the hippocampus.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.