{"title":"Floquet control of interactions and edge states in a programmable quantum simulator.","authors":"Or Katz,Lei Feng,Diego Porras,Christopher Monroe","doi":"10.1038/s41467-025-62897-2","DOIUrl":null,"url":null,"abstract":"Quantum simulators based on trapped ions enable the study of spin systems and models with rich dynamical phenomena. The Su-Schrieffer-Heeger (SSH) model for fermions in one dimension is a canonical example that can support a topological insulator phase when couplings between sites are dimerized, featuring long-lived edge states. Here, we experimentally implement a spin-based variant of the SSH model using one-dimensional trapped-ion chains with tunable interaction range, realized in crystals containing up to 22 interacting spins. Using an array of individually focused laser beams, we apply site-specific, time-dependent Floquet fields to induce controlled bond dimerization. Under conditions that preserve inversion symmetry, we observe edge-state dynamics consistent with SSH-like behavior. We study the propagation and localization of spin excitations, as well as the evolution of highly excited configurations across different interaction regimes. These results demonstrate how precision Floquet engineering enables the exploration of complex spin models and dynamics, laying the groundwork for future preparation and characterization of topological and exotic phases of matter.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"32 1","pages":"8815"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62897-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum simulators based on trapped ions enable the study of spin systems and models with rich dynamical phenomena. The Su-Schrieffer-Heeger (SSH) model for fermions in one dimension is a canonical example that can support a topological insulator phase when couplings between sites are dimerized, featuring long-lived edge states. Here, we experimentally implement a spin-based variant of the SSH model using one-dimensional trapped-ion chains with tunable interaction range, realized in crystals containing up to 22 interacting spins. Using an array of individually focused laser beams, we apply site-specific, time-dependent Floquet fields to induce controlled bond dimerization. Under conditions that preserve inversion symmetry, we observe edge-state dynamics consistent with SSH-like behavior. We study the propagation and localization of spin excitations, as well as the evolution of highly excited configurations across different interaction regimes. These results demonstrate how precision Floquet engineering enables the exploration of complex spin models and dynamics, laying the groundwork for future preparation and characterization of topological and exotic phases of matter.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.