{"title":"AI-embodied multi-modal flexible electronic robots with programmable sensing, actuating and self-learning.","authors":"Junfeng Li,Zhangyu Xu,Nanpei Li,Kaijun Zhang,Guangyong Xiong,Minjie Sun,Chao Hou,Jingjing Ji,Fan Zhang,Junwen Zhong,YongAn Huang","doi":"10.1038/s41467-025-63881-6","DOIUrl":null,"url":null,"abstract":"Achieving robust environmental interaction in small-scale soft robotics remains challenging due to limitations in terrain adaptability, real-time perception, and autonomous decision-making. Here, we introduce Flexible Electronic Robots constructed from programmable flexible electronic components and setae modules. The integrated platform combines multimodal sensing/actuation with embedded computing, enabling adaptive operation in diverse environments. Applying modular design principles to configure structural topologies, actuation sequences, and circuit layouts, these robots achieve multimodal locomotion, including vertical surface traversal, directional control, and obstacle navigation. The system implements proprioception (shape and attitude) and exteroception (vision, temperature, humidity, proximity and pathway shape recognition) under dynamic conditions. Onboard computational units enable autonomous behaviors like hazard evasion and thermal gradient tracking through adaptive decision-making, supported by embodied artificial intelligence. In this work, we establish a framework for creating small-scale soft robots with enhanced environmental intelligence through tightly integrated sensing, actuation, and decision-making architectures.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"206 1","pages":"8818"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63881-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving robust environmental interaction in small-scale soft robotics remains challenging due to limitations in terrain adaptability, real-time perception, and autonomous decision-making. Here, we introduce Flexible Electronic Robots constructed from programmable flexible electronic components and setae modules. The integrated platform combines multimodal sensing/actuation with embedded computing, enabling adaptive operation in diverse environments. Applying modular design principles to configure structural topologies, actuation sequences, and circuit layouts, these robots achieve multimodal locomotion, including vertical surface traversal, directional control, and obstacle navigation. The system implements proprioception (shape and attitude) and exteroception (vision, temperature, humidity, proximity and pathway shape recognition) under dynamic conditions. Onboard computational units enable autonomous behaviors like hazard evasion and thermal gradient tracking through adaptive decision-making, supported by embodied artificial intelligence. In this work, we establish a framework for creating small-scale soft robots with enhanced environmental intelligence through tightly integrated sensing, actuation, and decision-making architectures.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.