Dual-outcome Prediction of Post-Ischemic Stroke Epilepsy and Mortality Using Multimodal Quantitative Biomarkers.

Yilun Chen, Alexandria L Soto, Tejaswi D Sudhakar, Adeel Zubair, Haoqi Sun, Jin Jing, Wendong Ge, Lucas Loman, Adithya Sivaraju, Nils Petersen, Lawrence J Hirsch, Hal Blumenfeld, Sahar F Zafar, Aaron F Struck, Kevin N Sheth, Emily J Gilmore, M Brandon Westover, Jennifer A Kim
{"title":"Dual-outcome Prediction of Post-Ischemic Stroke Epilepsy and Mortality Using Multimodal Quantitative Biomarkers.","authors":"Yilun Chen, Alexandria L Soto, Tejaswi D Sudhakar, Adeel Zubair, Haoqi Sun, Jin Jing, Wendong Ge, Lucas Loman, Adithya Sivaraju, Nils Petersen, Lawrence J Hirsch, Hal Blumenfeld, Sahar F Zafar, Aaron F Struck, Kevin N Sheth, Emily J Gilmore, M Brandon Westover, Jennifer A Kim","doi":"10.1101/2025.09.22.25335736","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Post-ischemic stroke epilepsy (PISE) reduces quality of life, and early risk prediction can guide prevention strategies and anti-epileptogenesis treatment trials. Stroke severity predicts both PISE and mortality, and ignoring mortality can overestimate epilepsy risk. We sought to enhance PISE risk stratification by modeling death as a competing outcome, integrating quantitative clinical, neuroimaging, and electroencephalography (EEG) biomarkers to distinguish shared and distinct predictors of epilepsy and mortality.</p><p><strong>Methods: </strong>We developed a PISE prediction model using retrospective data from Yale-New Haven Hospital. The training cohort included patients from 2014-2020; the testing cohort from 2021-2022. Eligible patients were adults with acute ischemic stroke who underwent neuroimaging and EEG monitoring <7 days post-stroke and had follow-up >7 days.</p><p><strong>Results: </strong>Of 280 patients, 53 developed PISE first, 104 died first, and the rest were censored. Quantitative PISE biomarkers included greater 72h stroke severity (HR <sub>Δ3</sub> [95%CI], 1.2 [1.1-1.4]), infarct volume (HR <sub>Δ10mL</sub> , 1.06 [1.04-1.08]), EEG epileptiform abnormality burden (HR <sub>Δ10%</sub> , 1.2 [1.1-1.3]), and EEG power asymmetries (HR <sub>Δ10%</sub> , 2.0 [1.4-2.9]). Death predictors included older age (HR <sub>Δ10years</sub> , 1.7 [1.4-2.0]), worse pre-stroke functional status (HR, 1.4 [1.2-1.7]), atrial fibrillation history (HR, 2.4 [1.6-3.7]), cardioembolism etiology (HR, 1.9 [1.2-3.0]), anterior cerebral artery involvement (HR, 2.2 [1.2-3.7]), and greater EEG global theta-band powers (HR <sub>Δ10µV</sub> , 6.2 [2.3-17]). Our model, CRIME <sub>PISE</sub> , integrating these features, allows prediction of PISE-first and death-first risk scores with AUC of 0.72 (95%CI, 0.60-0.83) and 0.79 (0.72-0.85), respectively. Compared with the benchmark SeLECT model, CRIME <sub>PISE</sub> better predicted PISE in patients with ≥4 SeLECT points (AUC, 0.72 vs 0.58) but not those with <4 points (AUC, 0.33 vs 0.52). In the testing cohort, CRIME <sub>PISE</sub> identified a more selective group (n=18 vs 44 per SeLECT) with a higher PISE rate (39% vs 20%) and a lower mortality rate (22% vs 45%).</p><p><strong>Discussion: </strong>CRIME <sub>PISE</sub> enhances PISE prediction by accounting for mortality as a competing outcome and incorporating multimodal quantitative biomarkers. Because its benefits over SeLECT are most pronounced in high-risk patients, a two-stage approach-SeLECT screening followed by CRIME <sub>PISE</sub> in SeLECT-positive cases-may better target candidates for anti-epileptogenesis trials by prioritizing patients likely to survive long-term and develop epilepsy.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.22.25335736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives: Post-ischemic stroke epilepsy (PISE) reduces quality of life, and early risk prediction can guide prevention strategies and anti-epileptogenesis treatment trials. Stroke severity predicts both PISE and mortality, and ignoring mortality can overestimate epilepsy risk. We sought to enhance PISE risk stratification by modeling death as a competing outcome, integrating quantitative clinical, neuroimaging, and electroencephalography (EEG) biomarkers to distinguish shared and distinct predictors of epilepsy and mortality.

Methods: We developed a PISE prediction model using retrospective data from Yale-New Haven Hospital. The training cohort included patients from 2014-2020; the testing cohort from 2021-2022. Eligible patients were adults with acute ischemic stroke who underwent neuroimaging and EEG monitoring <7 days post-stroke and had follow-up >7 days.

Results: Of 280 patients, 53 developed PISE first, 104 died first, and the rest were censored. Quantitative PISE biomarkers included greater 72h stroke severity (HR Δ3 [95%CI], 1.2 [1.1-1.4]), infarct volume (HR Δ10mL , 1.06 [1.04-1.08]), EEG epileptiform abnormality burden (HR Δ10% , 1.2 [1.1-1.3]), and EEG power asymmetries (HR Δ10% , 2.0 [1.4-2.9]). Death predictors included older age (HR Δ10years , 1.7 [1.4-2.0]), worse pre-stroke functional status (HR, 1.4 [1.2-1.7]), atrial fibrillation history (HR, 2.4 [1.6-3.7]), cardioembolism etiology (HR, 1.9 [1.2-3.0]), anterior cerebral artery involvement (HR, 2.2 [1.2-3.7]), and greater EEG global theta-band powers (HR Δ10µV , 6.2 [2.3-17]). Our model, CRIME PISE , integrating these features, allows prediction of PISE-first and death-first risk scores with AUC of 0.72 (95%CI, 0.60-0.83) and 0.79 (0.72-0.85), respectively. Compared with the benchmark SeLECT model, CRIME PISE better predicted PISE in patients with ≥4 SeLECT points (AUC, 0.72 vs 0.58) but not those with <4 points (AUC, 0.33 vs 0.52). In the testing cohort, CRIME PISE identified a more selective group (n=18 vs 44 per SeLECT) with a higher PISE rate (39% vs 20%) and a lower mortality rate (22% vs 45%).

Discussion: CRIME PISE enhances PISE prediction by accounting for mortality as a competing outcome and incorporating multimodal quantitative biomarkers. Because its benefits over SeLECT are most pronounced in high-risk patients, a two-stage approach-SeLECT screening followed by CRIME PISE in SeLECT-positive cases-may better target candidates for anti-epileptogenesis trials by prioritizing patients likely to survive long-term and develop epilepsy.

使用多模态定量生物标志物预测缺血性卒中后癫痫和死亡率的双结局。
背景与目的:缺血性脑卒中后癫痫(PISE)降低生活质量,早期风险预测可以指导预防策略和抗癫痫治疗试验。中风的严重程度可以预测PISE和死亡率,忽略死亡率会高估癫痫的风险。我们试图通过将死亡建模为一个竞争结果,整合定量临床、神经影像学和脑电图(EEG)生物标志物来区分癫痫和死亡率的共同和独特预测因素,从而增强PISE风险分层。方法:我们利用耶鲁-纽黑文医院的回顾性数据建立了PISE预测模型。培训队列包括2014-2020年的患者;2021-2022年的测试队列。符合条件的患者为急性缺血性脑卒中的成人患者,接受神经成像和脑电图监测7天。结果:280例患者中,53例首先发生PISE, 104例首先死亡,其余患者被审查。定量PISE生物标志物包括72h卒中严重程度(HR Δ3 [95%CI], 1.2[1.1-1.4])、梗死面积(HR Δ10mL, 1.06[1.04-1.08])、脑电图癫痫样异常负担(HR Δ10%, 1.2[1.1-1.3])和脑电图功率不对称(HR Δ10%, 2.0[1.4-2.9])。死亡预测因素包括年龄较大(HR Δ10years, 1.7[1.4-2.0])、卒中前功能状态较差(HR, 1.4[1.2-1.7])、房颤史(HR, 2.4[1.6-3.7])、心脏栓塞病因(HR, 1.9[1.2-3.0])、大脑前动脉受累(HR, 2.2[1.2-3.7])和脑电图总θ波段功率较大(HR Δ10µV, 6.2[2.3-17])。我们的CRIME PISE模型整合了这些特征,可以预测PISE优先和死亡优先的风险评分,AUC分别为0.72 (95%CI, 0.60-0.83)和0.79(0.72-0.85)。与基准SeLECT模型相比,CRIME PISE更好地预测了≥4个SeLECT点患者的PISE (AUC, 0.72 vs 0.58),但对于PISE患者来说,具有更高PISE率(39% vs 20%)和更低死亡率(22% vs 45%)的选择性组(n=18 vs 44)则无法预测PISE。讨论:CRIME PISE通过将死亡率作为竞争结果并结合多模态定量生物标志物来提高PISE预测。由于其优于SeLECT的益处在高危患者中最为明显,因此采用两阶段方法——SeLECT筛查,然后在SeLECT阳性病例中进行CRIME PISE——可以优先考虑可能长期存活并发展为癫痫的患者,从而更好地针对抗癫痫发生试验的候选患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信