Optical Microscopy Predictions of Focal Recurrence in Glioblastoma.

Sanjeev Herr, Niels Olshausen, Melike Pekmezci, Jasleen Kaur, Youssef Sibih, Vardhaan Ambati, Katie Scotford, Amit Persad, Thiebaud Picart, Akhil Kondepudi, Nancy Ann Oberheim-Bush, Albert Kim, Jacob Young, Mitchel S Berger, Madhumita Sushil, Todd Hollon, Shawn L Hervey-Jumper
{"title":"Optical Microscopy Predictions of Focal Recurrence in Glioblastoma.","authors":"Sanjeev Herr, Niels Olshausen, Melike Pekmezci, Jasleen Kaur, Youssef Sibih, Vardhaan Ambati, Katie Scotford, Amit Persad, Thiebaud Picart, Akhil Kondepudi, Nancy Ann Oberheim-Bush, Albert Kim, Jacob Young, Mitchel S Berger, Madhumita Sushil, Todd Hollon, Shawn L Hervey-Jumper","doi":"10.1101/2025.09.24.25336541","DOIUrl":null,"url":null,"abstract":"<p><p>A hallmark of glioblastoma (GBM) is disease recurrence, which occurs in all patients despite tumor resection, radiation, and chemotherapy. A critical challenge in glioblastoma treatment is the management of recurrent disease, for which there is no standard of care. Predicting the location of glioblastoma recurrence may improve the efficiency of advanced-stage therapies. Here, we present an artificial intelligence (AI)-based model to predict the risk of unprocessed surgical tissues at initial resection. AI-informed label-free optical microscopy was used to generate a normalized tumor infiltration value (AI-infiltration) for whole-slide optical images of samples taken from resection cavity margins. These values, in combination with clinical, radiographic, and molecular variables, were used to build a predictive model of focal recurrence. In a cohort of 80 patients, comprising 367 samples and 133,454 unique images, glioblastoma infiltration was significantly higher in margin samples from recurrent tumors (p = 0.026) compared with those from non-recurrent tumors. A random forest (RF) machine learning classifier was able to predict site recurrence with an average area under the receiver operating characteristic curve (AUC) of 86.6% ± 10.0 for the training cohort and 80.3% (95% CI: 0.641-0.965) for the validation cohort. AI-infiltration was the strongest contributor to recurrence prediction, outperforming tumor molecular features. Model performance remained high regardless of tumor location, resulting in random forest model predictions of recurrence at 5 and 10 millimeters of each sampled site. These findings represent the potential of AI to predict sites of tumor recurrence, thereby improving accessibility to targeted, precision, multimodal therapy for the highest-risk areas of disease. <b>One Sentence Summary:</b> Machine learning estimates of tumor infiltration predict focal glioblastoma recurrence.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.24.25336541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A hallmark of glioblastoma (GBM) is disease recurrence, which occurs in all patients despite tumor resection, radiation, and chemotherapy. A critical challenge in glioblastoma treatment is the management of recurrent disease, for which there is no standard of care. Predicting the location of glioblastoma recurrence may improve the efficiency of advanced-stage therapies. Here, we present an artificial intelligence (AI)-based model to predict the risk of unprocessed surgical tissues at initial resection. AI-informed label-free optical microscopy was used to generate a normalized tumor infiltration value (AI-infiltration) for whole-slide optical images of samples taken from resection cavity margins. These values, in combination with clinical, radiographic, and molecular variables, were used to build a predictive model of focal recurrence. In a cohort of 80 patients, comprising 367 samples and 133,454 unique images, glioblastoma infiltration was significantly higher in margin samples from recurrent tumors (p = 0.026) compared with those from non-recurrent tumors. A random forest (RF) machine learning classifier was able to predict site recurrence with an average area under the receiver operating characteristic curve (AUC) of 86.6% ± 10.0 for the training cohort and 80.3% (95% CI: 0.641-0.965) for the validation cohort. AI-infiltration was the strongest contributor to recurrence prediction, outperforming tumor molecular features. Model performance remained high regardless of tumor location, resulting in random forest model predictions of recurrence at 5 and 10 millimeters of each sampled site. These findings represent the potential of AI to predict sites of tumor recurrence, thereby improving accessibility to targeted, precision, multimodal therapy for the highest-risk areas of disease. One Sentence Summary: Machine learning estimates of tumor infiltration predict focal glioblastoma recurrence.

胶质母细胞瘤局灶性复发的光学显微镜预测。
胶质母细胞瘤(GBM)的一个特点是疾病复发,尽管肿瘤切除、放疗和化疗,但所有患者都会复发。胶质母细胞瘤治疗的一个关键挑战是复发性疾病的管理,对于复发性疾病没有标准的治疗。预测胶质母细胞瘤复发的位置可以提高晚期治疗的效率。在这里,我们提出了一个基于人工智能(AI)的模型来预测初始切除时未处理的手术组织的风险。使用人工智能无标记光学显微镜对切除腔缘的样本进行全玻片光学图像生成归一化肿瘤浸润值(ai -浸润)。这些值,结合临床,影像学和分子变量,用于建立局灶性复发的预测模型。在80例患者的队列中,包括367个样本和133,454张独特的图像,复发肿瘤的边缘样本中胶质母细胞瘤浸润明显高于非复发肿瘤的边缘样本(p = 0.026)。随机森林(RF)机器学习分类器能够预测部位复发,训练组的受试者工作特征曲线(AUC)下的平均面积为86.6%±10.0,验证组为80.3% (95% CI: 0.641-0.965)。ai浸润是预测复发的最重要因素,优于肿瘤分子特征。无论肿瘤的位置如何,模型的性能仍然很高,导致随机森林模型预测在每个采样位置的5和10毫米处复发。这些发现代表了人工智能在预测肿瘤复发部位方面的潜力,从而提高了对疾病最高风险区域进行靶向、精确、多模式治疗的可及性。一句话总结:机器学习估计肿瘤浸润预测局灶性胶质母细胞瘤复发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信