Motor Cortex Coverage Predicts Signal Strength of a Stentrode Endovascular Brain-Computer Interface.

Hunter R Schone, Peter Yoo, Adam Fry, Nikole Chetty, Abbey Sawyer, Cara Herbers, Fang Liu, Chan Hong Moon, Katya Hill, Shahram Majidi, Noam Y Harel, Raul G Nogueira, Elad Levy, David F Putrino, David Lacomis, Thomas J Oxley, Douglas J Weber, Jennifer L Collinger
{"title":"Motor Cortex Coverage Predicts Signal Strength of a Stentrode Endovascular Brain-Computer Interface.","authors":"Hunter R Schone, Peter Yoo, Adam Fry, Nikole Chetty, Abbey Sawyer, Cara Herbers, Fang Liu, Chan Hong Moon, Katya Hill, Shahram Majidi, Noam Y Harel, Raul G Nogueira, Elad Levy, David F Putrino, David Lacomis, Thomas J Oxley, Douglas J Weber, Jennifer L Collinger","doi":"10.1101/2025.09.19.25335875","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs) are an emerging assistive technology for individuals with motor impairments, enabling the command of digital devices using neural signals. The Stentrode BCI is an implant, positioned within the brain's neurovasculature, that can record movement-related electrocortical activity. Over 5 years, 10 participants (8 amyotrophic lateral sclerosis, 1 primary lateral sclerosis, 1 brainstem stroke) have been implanted with a Stentrode BCI and significant inter-participant variability has been observed in the recorded motor signal strength. This variability warrants a critical investigation to characterize potential predictors of signal strength to promote more successful BCI control in future participants. Therefore, we investigated the relationship between Stentrode BCI motor signal strength and a variety of user-specific factors: (1) clinical status, (2) pre-implant functional activity, (3) peri-implant neuroanatomy, (4) peri-implant neurovasculature, and (5) Stentrode device integrity. Data from 10 implanted participants, including clinical demographics, pre- and post-implant neuroimaging and longitudinal Stentrode BCI motor signal assessments were acquired over a year. Across all potential predictors, the strongest predictor of Stentrode motor signal strength was the degree to which the Stentrode BCI's deployment position overlapped with primary motor cortex (M1). These findings highlight the importance of targeting M1 during device deployment and, more generally, provides a scientific framework for investigating the role of user-specific factors on BCI device outcomes.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.19.25335875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interfaces (BCIs) are an emerging assistive technology for individuals with motor impairments, enabling the command of digital devices using neural signals. The Stentrode BCI is an implant, positioned within the brain's neurovasculature, that can record movement-related electrocortical activity. Over 5 years, 10 participants (8 amyotrophic lateral sclerosis, 1 primary lateral sclerosis, 1 brainstem stroke) have been implanted with a Stentrode BCI and significant inter-participant variability has been observed in the recorded motor signal strength. This variability warrants a critical investigation to characterize potential predictors of signal strength to promote more successful BCI control in future participants. Therefore, we investigated the relationship between Stentrode BCI motor signal strength and a variety of user-specific factors: (1) clinical status, (2) pre-implant functional activity, (3) peri-implant neuroanatomy, (4) peri-implant neurovasculature, and (5) Stentrode device integrity. Data from 10 implanted participants, including clinical demographics, pre- and post-implant neuroimaging and longitudinal Stentrode BCI motor signal assessments were acquired over a year. Across all potential predictors, the strongest predictor of Stentrode motor signal strength was the degree to which the Stentrode BCI's deployment position overlapped with primary motor cortex (M1). These findings highlight the importance of targeting M1 during device deployment and, more generally, provides a scientific framework for investigating the role of user-specific factors on BCI device outcomes.

运动皮层覆盖预测血管内支架脑机接口的信号强度。
脑机接口(bci)是一种新兴的运动障碍辅助技术,可以使用神经信号来控制数字设备。Stentrode脑机接口是一种植入物,放置在大脑的神经血管系统中,可以记录与运动相关的皮层电活动。在5年多的时间里,10名参与者(8名肌萎缩性侧索硬化症,1名原发性侧索硬化症,1名脑干中风)植入了Stentrode脑机接口,在记录的运动信号强度中观察到显著的参与者之间的差异。这种可变性值得进行重要的研究,以表征信号强度的潜在预测因素,以促进未来参与者更成功的脑机接口控制。因此,我们研究了Stentrode BCI运动信号强度与多种用户特定因素之间的关系:(1)临床状态,(2)植入前功能活动,(3)种植体周围神经解剖,(4)种植体周围神经血管,(5)Stentrode装置完整性。来自10名植入参与者的数据,包括临床人口统计学,植入前和植入后的神经成像和纵向支架BCI运动信号评估。在所有潜在的预测因子中,Stentrode运动信号强度的最强预测因子是Stentrode脑机接口的部署位置与初级运动皮层(M1)重叠的程度。这些发现强调了在设备部署期间靶向M1的重要性,更普遍地说,为调查用户特定因素对BCI设备结果的作用提供了一个科学框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信