{"title":"Oxidative phosphorylation is required for fish heart regeneration","authors":"","doi":"10.1038/s44161-025-00723-0","DOIUrl":null,"url":null,"abstract":"Oxidative phosphorylation was considered detrimental for heart regeneration, as it produces reactive oxygen species that block cardiomyocyte proliferation by causing DNA damage. However, harnessing natural variation in the regenerative capacity of seven wild-type zebrafish strains has revealed that the activation of oxidative metabolism after proliferation is essential for cardiomyocyte maturation and successful regeneration.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1219-1220"},"PeriodicalIF":10.8000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-025-00723-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative phosphorylation was considered detrimental for heart regeneration, as it produces reactive oxygen species that block cardiomyocyte proliferation by causing DNA damage. However, harnessing natural variation in the regenerative capacity of seven wild-type zebrafish strains has revealed that the activation of oxidative metabolism after proliferation is essential for cardiomyocyte maturation and successful regeneration.