Elaheh Zendehrouh, Mohammad Se Sendi, Anees Abrol, Armin Iraji, Vince Calhoun
{"title":"State Guided ICA of Functional Network Connectivity Reveals Temporal Signatures of Alzheimer's Disease.","authors":"Elaheh Zendehrouh, Mohammad Se Sendi, Anees Abrol, Armin Iraji, Vince Calhoun","doi":"10.1101/2025.09.23.25336175","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying robust neuroimaging biomarkers for Alzheimer's disease (AD) and mild cognitive impairment (MCI) is essential for early diagnosis and intervention. In this study, we introduce a novel, fully automated, guided dynamic functional connectivity (dFNC) framework to extract multiple dynamic measures for distinguishing MCI/AD from cognitively normal (CN) individuals. Resting-state fMRI data were used to extract subject-specific brain networks via spatially constrained independent component analysis (scICA), using a multi-objective optimization framework to ensure alignment with known functional networks while preserving individual variability. Using these components, dFNC was computed through a sliding-window approach. ICA was then applied to the concatenated dFNC matrices from the UK Biobank (UKBB) dataset to identify five canonical brain states, each representing a replicable, independent pattern of connectivity. These states served as biologically informed priors in a state-constrained ICA (St-cICA), which was applied to each subject in the combined OASIS-3 and ADNI datasets to guide individual-level decomposition and ensure interpretable connectivity states guided by state priors derived from the normative UKBB sample. St-cICA extracted subject-specific dFNC features and associated weighted timecourses. To characterize dFNC patterns, we computed metrics from the most strongly expressed (primary) state and introduce estimation of the second-most expressed (secondary) state at each timepoint, including dwell time, occupancy rate, and transition probabilities. Group comparisons using two-sample t-tests revealed widespread and significant alterations in AD/MCI compared to CN individuals. AD/MCI participants exhibited higher dwell times and increased self-transitions, indicating reduced neural flexibility and a tendency to remain in specific connectivity states. In contrast, CN individuals showed more diverse and recurrent transitions, reflecting greater adaptability. Secondary transitions revealed widespread selective switching in CN, whereas AD/MCI showed reduced cross-state engagement. A classification model trained on 6,960 dynamic features achieved strong performance in distinguishing AD/MCI from CN (mean AUC ≈ 0.85). These findings highlight the potential of guided dFNC as a biomarker framework for early-stage AD detection using resting-state fMRI.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.23.25336175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying robust neuroimaging biomarkers for Alzheimer's disease (AD) and mild cognitive impairment (MCI) is essential for early diagnosis and intervention. In this study, we introduce a novel, fully automated, guided dynamic functional connectivity (dFNC) framework to extract multiple dynamic measures for distinguishing MCI/AD from cognitively normal (CN) individuals. Resting-state fMRI data were used to extract subject-specific brain networks via spatially constrained independent component analysis (scICA), using a multi-objective optimization framework to ensure alignment with known functional networks while preserving individual variability. Using these components, dFNC was computed through a sliding-window approach. ICA was then applied to the concatenated dFNC matrices from the UK Biobank (UKBB) dataset to identify five canonical brain states, each representing a replicable, independent pattern of connectivity. These states served as biologically informed priors in a state-constrained ICA (St-cICA), which was applied to each subject in the combined OASIS-3 and ADNI datasets to guide individual-level decomposition and ensure interpretable connectivity states guided by state priors derived from the normative UKBB sample. St-cICA extracted subject-specific dFNC features and associated weighted timecourses. To characterize dFNC patterns, we computed metrics from the most strongly expressed (primary) state and introduce estimation of the second-most expressed (secondary) state at each timepoint, including dwell time, occupancy rate, and transition probabilities. Group comparisons using two-sample t-tests revealed widespread and significant alterations in AD/MCI compared to CN individuals. AD/MCI participants exhibited higher dwell times and increased self-transitions, indicating reduced neural flexibility and a tendency to remain in specific connectivity states. In contrast, CN individuals showed more diverse and recurrent transitions, reflecting greater adaptability. Secondary transitions revealed widespread selective switching in CN, whereas AD/MCI showed reduced cross-state engagement. A classification model trained on 6,960 dynamic features achieved strong performance in distinguishing AD/MCI from CN (mean AUC ≈ 0.85). These findings highlight the potential of guided dFNC as a biomarker framework for early-stage AD detection using resting-state fMRI.