Yichao Huang, Yufeng Ke, Jiayi Li, Shuang Liu, Dong Ming
{"title":"Frontal Theta Modulation in Sequential Working Memory: the Impact of Spatial Regularity and Scenario.","authors":"Yichao Huang, Yufeng Ke, Jiayi Li, Shuang Liu, Dong Ming","doi":"10.1007/s10548-025-01152-9","DOIUrl":null,"url":null,"abstract":"<p><p>Humans can quickly extract spatial regularities from sequences to reduce working memory (WM) load, yet the electrophysiological mechanisms remain unclear. Although previous studies have underscored the role of frontal-midline theta (FM-theta) in sequential WM processing, whether and how spatial regularity modulates FM-theta is unknown. To investigate this, we varied the spatial relation between successive items-more repetitions of the same displacement yielded fewer unique chunks and thus higher regularity-while sequence length stayed fixed. Participants were asked to encode, maintain and reproduce the temporal order of sequences utilizing their spatial structures. To enhance ecological validity, we further embedded the task in a complex scenario that included meaningful contexts, dispersed layouts, and variable stimulus sizes. Behavioral data revealed that sequences with higher regularity and the simple scenario yielded higher accuracy, confirming successful manipulations of regularity and scenario difficulty. The overall temporal dynamics of EEG data showed prominent theta enhancement and concurrent alpha/beta suppression during encoding and maintenance. Subsequent analyses across the 4-30 Hz and delay period demonstrated that theta power increased while alpha/beta power declined monotonically with sequence complexity. Notably, regularity-modulated alpha power differed in two scenarios. Moreover, the results found that only sequence regularity-not scenario difficulty-modulated fronto-posterior theta connectivity and slowed the FM-theta frequency. In sum, FM-theta, operating through long-range connectivity and frequency modulation, exclusively tracks spatial-regularity demands in sequential WM, while such neural mechanisms remain impervious to variations in scenario difficulty. These findings suggest that FM-theta may serve as a specific neural marker for spatial regularity processing, rather than a general index of task difficulty, thereby offering a concrete target for future neuromodulatory interventions.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 6","pages":"74"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01152-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Humans can quickly extract spatial regularities from sequences to reduce working memory (WM) load, yet the electrophysiological mechanisms remain unclear. Although previous studies have underscored the role of frontal-midline theta (FM-theta) in sequential WM processing, whether and how spatial regularity modulates FM-theta is unknown. To investigate this, we varied the spatial relation between successive items-more repetitions of the same displacement yielded fewer unique chunks and thus higher regularity-while sequence length stayed fixed. Participants were asked to encode, maintain and reproduce the temporal order of sequences utilizing their spatial structures. To enhance ecological validity, we further embedded the task in a complex scenario that included meaningful contexts, dispersed layouts, and variable stimulus sizes. Behavioral data revealed that sequences with higher regularity and the simple scenario yielded higher accuracy, confirming successful manipulations of regularity and scenario difficulty. The overall temporal dynamics of EEG data showed prominent theta enhancement and concurrent alpha/beta suppression during encoding and maintenance. Subsequent analyses across the 4-30 Hz and delay period demonstrated that theta power increased while alpha/beta power declined monotonically with sequence complexity. Notably, regularity-modulated alpha power differed in two scenarios. Moreover, the results found that only sequence regularity-not scenario difficulty-modulated fronto-posterior theta connectivity and slowed the FM-theta frequency. In sum, FM-theta, operating through long-range connectivity and frequency modulation, exclusively tracks spatial-regularity demands in sequential WM, while such neural mechanisms remain impervious to variations in scenario difficulty. These findings suggest that FM-theta may serve as a specific neural marker for spatial regularity processing, rather than a general index of task difficulty, thereby offering a concrete target for future neuromodulatory interventions.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.