RDMkit: A research data management toolkit for life sciences.

IF 7.4 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-08-22 eCollection Date: 2025-09-12 DOI:10.1016/j.patter.2025.101345
Pinar Alper, Flora D'Anna, Bert Droesbeke, Munazah Andrabi, Rafael Andrade Buono, Federico Bianchini, Korbinian Bösl, Ishwar Chandramouliswaran, Martin Cook, Daniel Faria, Nazeefa Fatima, Rob Hooft, Niclas Jareborg, Mijke Jetten, Diana Pilvar, Gil Poires-Oliveira, Marina Popleteeva, Laura Portell-Silva, Jan Slifka, Marek Suchánek, Celia van Gelder, Danielle Welter, Ulrike Wittig, Frederik Coppens, Carole Goble
{"title":"RDMkit: A research data management toolkit for life sciences.","authors":"Pinar Alper, Flora D'Anna, Bert Droesbeke, Munazah Andrabi, Rafael Andrade Buono, Federico Bianchini, Korbinian Bösl, Ishwar Chandramouliswaran, Martin Cook, Daniel Faria, Nazeefa Fatima, Rob Hooft, Niclas Jareborg, Mijke Jetten, Diana Pilvar, Gil Poires-Oliveira, Marina Popleteeva, Laura Portell-Silva, Jan Slifka, Marek Suchánek, Celia van Gelder, Danielle Welter, Ulrike Wittig, Frederik Coppens, Carole Goble","doi":"10.1016/j.patter.2025.101345","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of data-driven scientific investigations has made research data management (RDM) essential for good scientific practice. Implementing RDM is a complex challenge for research communities, infrastructures, and host organizations. Generic RDM guidelines often do not address practical questions, and disciplinary best practices can be overwhelming without proper context. Once guidelines are established, expanding their reach and keeping them up to date is challenging. The RDMkit is an open community-led resource designed as a gateway to reach the wealth of RDM knowledge, tools, training, and resources in life sciences. The RDMkit provides best-practice guidelines on common RDM tasks expected of data stewards and researchers, specific data management challenges and solutions from life science domains, and tool assemblies showcasing holistic solutions to support the research data life cycle. Built on a reusable open infrastructure, the RDMkit allows organizations to create their own guidelines using it as a blueprint.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 9","pages":"101345"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/12 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of data-driven scientific investigations has made research data management (RDM) essential for good scientific practice. Implementing RDM is a complex challenge for research communities, infrastructures, and host organizations. Generic RDM guidelines often do not address practical questions, and disciplinary best practices can be overwhelming without proper context. Once guidelines are established, expanding their reach and keeping them up to date is challenging. The RDMkit is an open community-led resource designed as a gateway to reach the wealth of RDM knowledge, tools, training, and resources in life sciences. The RDMkit provides best-practice guidelines on common RDM tasks expected of data stewards and researchers, specific data management challenges and solutions from life science domains, and tool assemblies showcasing holistic solutions to support the research data life cycle. Built on a reusable open infrastructure, the RDMkit allows organizations to create their own guidelines using it as a blueprint.

RDMkit:生命科学研究数据管理工具包。
数据驱动的科学调查的兴起使得研究数据管理(RDM)对于良好的科学实践至关重要。实现RDM对于研究团体、基础设施和宿主组织来说是一个复杂的挑战。通用的RDM指导方针通常不能解决实际问题,并且没有适当的上下文,规程最佳实践可能会压倒一切。一旦制定了指导方针,扩大其影响范围并使其保持最新是具有挑战性的。RDMkit是一个开放的社区主导的资源,被设计为获取生命科学中丰富的RDM知识、工具、培训和资源的门户。RDMkit提供了关于数据管理员和研究人员期望的常见RDM任务的最佳实践指南,来自生命科学领域的特定数据管理挑战和解决方案,以及展示支持研究数据生命周期的整体解决方案的工具集。RDMkit建立在可重用的开放基础设施之上,允许组织使用它作为蓝图创建自己的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信