Xinyue Gong , Guofeng Zhang , Di Zhao , Zhibin Jin , Yifei Zhu , Linying Jiang , Bo Ding , Honghui Xue , Han Lin , Weijing Zhang , Dong Zhang , Juan Tu
{"title":"Modified UNet-enhanced ultrasonic superb microvascular imaging feature extraction and grading of carpal tunnel syndrome","authors":"Xinyue Gong , Guofeng Zhang , Di Zhao , Zhibin Jin , Yifei Zhu , Linying Jiang , Bo Ding , Honghui Xue , Han Lin , Weijing Zhang , Dong Zhang , Juan Tu","doi":"10.1016/j.ultras.2025.107834","DOIUrl":null,"url":null,"abstract":"<div><div>Carpal tunnel syndrome (CTS) is recognized as the most frequently encountered median nerve (MN) entrapment neuropathy, with a disproportionate burden in middle-aged and elderly individuals and in occupational groups with repetitive wrist use. Anatomically, CTS is characterized by compression of the median nerve within the confined space between the transverse carpal ligament and flexor tendons, and microcirculatory impairment is regarded as one of its key pathological bases. Although electrodiagnostic assessments are considered as diagnostic gold standard, their utility is limited by suboptimal patient compliance, procedural discomfort, and inadequate sensitivity for detecting mild disease. This study integrates ultrafast Superb Microvascular Imaging (SMI) with a classification-guided, improved UNet segmentation modal and quantitative image analysis to objectively extract microvascular features for CTS grading. In a cohort of 105 patients (21 mild, 71 moderate, 13 severe CTS) and 21 healthy controls, longitudinal and transverse SMI cine loops were segmented using an improved UNet with cross-plane classification guidance. The modified network can yielded superior segmentation effect over a traditional UNet. From segmented regions we extracted 6 SMI-derived geometric features, which were then used as predictors in a nonlinear quadratic regression model for CTS severity grading. The model achieved 93.7 % overall classification accuracy and an AUC of 0.95 in cross validation. Independent blind validation (n = 12) showed strong agreement with expert sonographers (Kappa = 0.87). These results demonstrate that high spatiotemporal SMI combined with anatomy-aware deep learning model could enable reproducible extraction of microvascular geometry, and supports robust, noninvasive grading of CTS, with potential for deployment on portable ultrasound platforms for point-of-care screening and bedside ultrasonic monitoring.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"158 ","pages":"Article 107834"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25002719","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Carpal tunnel syndrome (CTS) is recognized as the most frequently encountered median nerve (MN) entrapment neuropathy, with a disproportionate burden in middle-aged and elderly individuals and in occupational groups with repetitive wrist use. Anatomically, CTS is characterized by compression of the median nerve within the confined space between the transverse carpal ligament and flexor tendons, and microcirculatory impairment is regarded as one of its key pathological bases. Although electrodiagnostic assessments are considered as diagnostic gold standard, their utility is limited by suboptimal patient compliance, procedural discomfort, and inadequate sensitivity for detecting mild disease. This study integrates ultrafast Superb Microvascular Imaging (SMI) with a classification-guided, improved UNet segmentation modal and quantitative image analysis to objectively extract microvascular features for CTS grading. In a cohort of 105 patients (21 mild, 71 moderate, 13 severe CTS) and 21 healthy controls, longitudinal and transverse SMI cine loops were segmented using an improved UNet with cross-plane classification guidance. The modified network can yielded superior segmentation effect over a traditional UNet. From segmented regions we extracted 6 SMI-derived geometric features, which were then used as predictors in a nonlinear quadratic regression model for CTS severity grading. The model achieved 93.7 % overall classification accuracy and an AUC of 0.95 in cross validation. Independent blind validation (n = 12) showed strong agreement with expert sonographers (Kappa = 0.87). These results demonstrate that high spatiotemporal SMI combined with anatomy-aware deep learning model could enable reproducible extraction of microvascular geometry, and supports robust, noninvasive grading of CTS, with potential for deployment on portable ultrasound platforms for point-of-care screening and bedside ultrasonic monitoring.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.