Valutazione one-shot di Mistral7B sul nuovo benchmark EuropeMedQA.

Q3 Medicine
Olivia Riccomi, Francesco Andrea Causio, Vittorio De Vita, Antonio Cristiano, Manuel Del Medico, Lorenzo De Mori, Chiara Battipaglia, Melissa Sawaya, Luigi De Angelis, Marcello Di Pumpo, Alessandra Piscitelli, Pietro Eric Risuleo, Giulia Vojvodic, Bianca Destro Castaniti, Nicolò Scarsi
{"title":"Valutazione one-shot di Mistral7B sul nuovo benchmark EuropeMedQA.","authors":"Olivia Riccomi, Francesco Andrea Causio, Vittorio De Vita, Antonio Cristiano, Manuel Del Medico, Lorenzo De Mori, Chiara Battipaglia, Melissa Sawaya, Luigi De Angelis, Marcello Di Pumpo, Alessandra Piscitelli, Pietro Eric Risuleo, Giulia Vojvodic, Bianca Destro Castaniti, Nicolò Scarsi","doi":"10.1701/4573.45804","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) adoption in healthcare is rising. Unbiased evaluation requires uncontaminated benchmarks. We evaluated Mistral-7B-Instruct-v0.1 on 1120 human-validated Italian medical multiple-choice questions (SSM). Mistral achieved 40,2% accuracy and 38.8% F1 score on the dataset. Likely causes include English-centric instruction tuning, lack of medical domain knowledge, and prompt misalignment with the task format. These findings suggest that LLMs need further improvements before deployment.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"619-620"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) adoption in healthcare is rising. Unbiased evaluation requires uncontaminated benchmarks. We evaluated Mistral-7B-Instruct-v0.1 on 1120 human-validated Italian medical multiple-choice questions (SSM). Mistral achieved 40,2% accuracy and 38.8% F1 score on the dataset. Likely causes include English-centric instruction tuning, lack of medical domain knowledge, and prompt misalignment with the task format. These findings suggest that LLMs need further improvements before deployment.

Mistral7B对新的欧洲medqa基准的一次评估。
人工智能(AI)在医疗保健领域的应用正在上升。公正的评估需要不受污染的基准。我们在1120道人体验证的意大利医学多项选择题(SSM)上评估了Mistral-7B-Instruct-v0.1。Mistral在数据集上实现了40.2%的准确率和38.8%的F1得分。可能的原因包括以英语为中心的教学调整、缺乏医学领域知识以及与任务格式的迅速不一致。这些发现表明,llm在部署前需要进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recenti progressi in medicina
Recenti progressi in medicina Medicine-Medicine (all)
CiteScore
0.90
自引率
0.00%
发文量
143
期刊介绍: Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信