Towards learning healthcare systems in Italy: opportunities and challenges of AI at point-of-care.

Q3 Medicine
Luigi De Angelis, Alessio Pivetta, Francesco Baglivo, Luca Alessandro Cappellini, Francesca Aurora Sacchi, Marcello Di Pumpo, Mattia Mercier, Giacomo Diedenhofen, Mattia Di Bartolomeo, Francesco Andrea Causio, Alessandro Belpiede, Alberto Eugenio Tozzi, Diana Ferro
{"title":"Towards learning healthcare systems in Italy: opportunities and challenges of AI at point-of-care.","authors":"Luigi De Angelis, Alessio Pivetta, Francesco Baglivo, Luca Alessandro Cappellini, Francesca Aurora Sacchi, Marcello Di Pumpo, Mattia Mercier, Giacomo Diedenhofen, Mattia Di Bartolomeo, Francesco Andrea Causio, Alessandro Belpiede, Alberto Eugenio Tozzi, Diana Ferro","doi":"10.1701/4573.45776","DOIUrl":null,"url":null,"abstract":"<p><p>In Italy, the growing enthusiasm for artificial intelligence (AI) in healthcare contrasts with significant infrastructural, cultural, and trust-related barriers hindering its real-world adoption. Moving beyond the hype requires a systems thinking approach, proposing the learning health system (LHS) framework as a structured path for integration. We highlight the complementary roles of AI models: traditional machine learning (ML) is proven for diagnostics and prognostics, while large language models (LLMs) excel at administrative tasks and can structure unstructured data to train robust ML tools. The LHS cycle reveals key challenges for Italy: moving from Practice-to-Data requires overcoming data fragmentation; from Data-to-Knowledge involves transforming data into insights while mitigating bias; and from Knowledge-to-Practice necessitates bridging the gap between evidence and clinical workflow by building trust and AI literacy. Ultimately, successful and equitable AI implementation depends on a holistic strategy combining infrastructure development, multidisciplinary collaboration, and robust governance to enhance the quality and sustainability of the national healthcare system.</p>","PeriodicalId":20887,"journal":{"name":"Recenti progressi in medicina","volume":"116 10","pages":"556-560"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recenti progressi in medicina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1701/4573.45776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In Italy, the growing enthusiasm for artificial intelligence (AI) in healthcare contrasts with significant infrastructural, cultural, and trust-related barriers hindering its real-world adoption. Moving beyond the hype requires a systems thinking approach, proposing the learning health system (LHS) framework as a structured path for integration. We highlight the complementary roles of AI models: traditional machine learning (ML) is proven for diagnostics and prognostics, while large language models (LLMs) excel at administrative tasks and can structure unstructured data to train robust ML tools. The LHS cycle reveals key challenges for Italy: moving from Practice-to-Data requires overcoming data fragmentation; from Data-to-Knowledge involves transforming data into insights while mitigating bias; and from Knowledge-to-Practice necessitates bridging the gap between evidence and clinical workflow by building trust and AI literacy. Ultimately, successful and equitable AI implementation depends on a holistic strategy combining infrastructure development, multidisciplinary collaboration, and robust governance to enhance the quality and sustainability of the national healthcare system.

在意大利学习医疗保健系统:人工智能在护理点的机遇和挑战。
在意大利,人们对人工智能(AI)在医疗保健领域日益增长的热情,与之形成鲜明对比的是,基础设施、文化和信任方面的障碍阻碍了人工智能在现实世界中的应用。超越这种炒作需要一种系统思维方法,提出学习型卫生系统(LHS)框架作为整合的结构化路径。我们强调了人工智能模型的互补作用:传统的机器学习(ML)已被证明可用于诊断和预测,而大型语言模型(llm)擅长管理任务,可以构建非结构化数据以训练强大的ML工具。LHS周期揭示了意大利面临的主要挑战:从实践到数据的转变需要克服数据碎片化;从数据到知识包括在减少偏见的同时将数据转化为见解;从知识到实践需要通过建立信任和人工智能素养来弥合证据和临床工作流程之间的差距。最终,成功和公平的人工智能实施取决于将基础设施发展、多学科合作和强有力的治理相结合的整体战略,以提高国家医疗保健系统的质量和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recenti progressi in medicina
Recenti progressi in medicina Medicine-Medicine (all)
CiteScore
0.90
自引率
0.00%
发文量
143
期刊介绍: Giunta ormai al sessantesimo anno, Recenti Progressi in Medicina continua a costituire un sicuro punto di riferimento ed uno strumento di lavoro fondamentale per l"ampliamento dell"orizzonte culturale del medico italiano. Recenti Progressi in Medicina è una rivista di medicina interna. Ciò significa il recupero di un"ottica globale e integrata, idonea ad evitare sia i particolarismi della informazione specialistica sia la frammentazione di quella generalista.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信