{"title":"Dual membrane receptor degradation via folate receptor targeting chimera.","authors":"Zhen Wang, Zhixin Li, Jenny Högström, Hiroyuki Inuzuka, Rui Jing, Peiqiang Yan, Tao Hou, Yihang Qi, Daoyuan Huang, Jingchao Wang, Ting Wu, Xiaoying Shi, Bolin Liu, Taru Muranen, Dingpeng Zhang, Wenyi Wei","doi":"10.1038/s41467-025-63882-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer drug resistance poses a significant challenge in oncology, often driven by intricate cross-talk among membrane-bound receptors that compromise mono-targeted therapies. We develop a dual membrane receptor degradation strategy leveraging Folate Receptor α (FRα) to address this issue. Folate Receptor α Targeting Chimeras-dual (FolTAC-dual) are engineered degraders designed to selectively and simultaneously degrade distinct receptor pairs: (1) EGFR/HER2 and (2) PD-L1/VISTA. Through modular optimization of modality configurations and geometries, we identify the \"string\" format as the most effective construct. Mechanistic studies demonstrate an ~85% increase in EGFR-binding affinity compared to the conventional knob-into-hole design, likely contributing to the improved efficiency of dual-target degradation. Proof-of-concept studies reveal that EGFR and HER2 FolTAC-dual effectively counteracts resistance in Trastuzumab/Lapatinib-resistant HER2-positive breast cancer models, while PD-L1 and VISTA FolTAC-dual rejuvenates immune responses in PD-L1 antibody-resistant syngeneic mouse models. These findings establish FolTAC-dual as a promising dual-degradation platform for clinical translation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8804"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63882-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer drug resistance poses a significant challenge in oncology, often driven by intricate cross-talk among membrane-bound receptors that compromise mono-targeted therapies. We develop a dual membrane receptor degradation strategy leveraging Folate Receptor α (FRα) to address this issue. Folate Receptor α Targeting Chimeras-dual (FolTAC-dual) are engineered degraders designed to selectively and simultaneously degrade distinct receptor pairs: (1) EGFR/HER2 and (2) PD-L1/VISTA. Through modular optimization of modality configurations and geometries, we identify the "string" format as the most effective construct. Mechanistic studies demonstrate an ~85% increase in EGFR-binding affinity compared to the conventional knob-into-hole design, likely contributing to the improved efficiency of dual-target degradation. Proof-of-concept studies reveal that EGFR and HER2 FolTAC-dual effectively counteracts resistance in Trastuzumab/Lapatinib-resistant HER2-positive breast cancer models, while PD-L1 and VISTA FolTAC-dual rejuvenates immune responses in PD-L1 antibody-resistant syngeneic mouse models. These findings establish FolTAC-dual as a promising dual-degradation platform for clinical translation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.