Intrinsic nanoparticle-single-atom interplays steering radical versus nonradical pathways in catalytic ozonation.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ya Liu, Jiajia Yang, Yuxian Wang, Wanli Zhu, Kunsheng Hu, Zhang Liu, Kinglun Yeung, Zhong-Shuai Zhu, Chunmao Chen, Xiaoguang Duan, Shaobin Wang
{"title":"Intrinsic nanoparticle-single-atom interplays steering radical versus nonradical pathways in catalytic ozonation.","authors":"Ya Liu, Jiajia Yang, Yuxian Wang, Wanli Zhu, Kunsheng Hu, Zhang Liu, Kinglun Yeung, Zhong-Shuai Zhu, Chunmao Chen, Xiaoguang Duan, Shaobin Wang","doi":"10.1038/s41467-025-63847-8","DOIUrl":null,"url":null,"abstract":"<p><p>Compositional heterogeneity in metal/nitrogen-doped carbons (M-N-Cs) complicates the fundamental elucidation of the intricate interplay between the active metal species that rule the reactivity of single atomic catalysts (SACs). This study unveils the electronic disruptions of cobalt nanoparticles (Co NPs) to the catalytic behaviors of cobalt single-atom (Co SA). The intense electronic communications between high-density Co NPs and Co SA sites lead to dissociation O<sub>3</sub> on the high-spin Co SA sites to generate surface-confined hydroxyl radicals (<sup>•</sup>OH). However, the tandem electron transfer yields superoxide radical (O<sub>2</sub><sup>•-</sup>) with low reactivity and remarkably reduce ozone utilization efficiency (OUE). In contrast, independent Co SA sites far or free from adjacent Co NPs induce a nonradical O<sub>3</sub> activation regime, which markedly improves electron utilization efficiency (~2.9-fold), OUE ( ~ 3.0-fold), and turnover frequency (TOF, ~2.5-fold) of Co SA. The nonradical catalytic ozonation process demonstrates high adaptability to complex water matrices and maintains long-term stability in the treatment of real petrochemical wastewater. The deciphered electronic interplays between metal nanoparticles and single atom sites advance a new paradigm to regulate the selectivity of single atom catalysis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8790"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63847-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Compositional heterogeneity in metal/nitrogen-doped carbons (M-N-Cs) complicates the fundamental elucidation of the intricate interplay between the active metal species that rule the reactivity of single atomic catalysts (SACs). This study unveils the electronic disruptions of cobalt nanoparticles (Co NPs) to the catalytic behaviors of cobalt single-atom (Co SA). The intense electronic communications between high-density Co NPs and Co SA sites lead to dissociation O3 on the high-spin Co SA sites to generate surface-confined hydroxyl radicals (OH). However, the tandem electron transfer yields superoxide radical (O2•-) with low reactivity and remarkably reduce ozone utilization efficiency (OUE). In contrast, independent Co SA sites far or free from adjacent Co NPs induce a nonradical O3 activation regime, which markedly improves electron utilization efficiency (~2.9-fold), OUE ( ~ 3.0-fold), and turnover frequency (TOF, ~2.5-fold) of Co SA. The nonradical catalytic ozonation process demonstrates high adaptability to complex water matrices and maintains long-term stability in the treatment of real petrochemical wastewater. The deciphered electronic interplays between metal nanoparticles and single atom sites advance a new paradigm to regulate the selectivity of single atom catalysis.

在催化臭氧化过程中,纳米粒子-单原子相互作用控制自由基与非自由基途径。
金属/氮掺杂碳(M-N-Cs)的成分不均匀性使得对控制单原子催化剂(SACs)反应性的活性金属之间复杂相互作用的基本阐明变得复杂。本研究揭示了钴纳米粒子(Co NPs)对钴单原子(Co SA)催化行为的电子干扰。高密度Co NPs和Co SA位点之间的强烈电子通信导致高自旋Co SA位点上的O3解离,产生表面限制的羟基自由基(•OH)。然而,串联电子转移产生的超氧自由基(O2•-)反应活性较低,显著降低了臭氧利用效率。相比之下,远离或远离相邻Co NPs的独立Co SA位点诱导非自由基O3活化,显著提高了Co SA的电子利用效率(~2.9倍)、OUE(~ 3.0倍)和周转率(~ 2.5倍)。在实际石化废水处理中,非自由基催化臭氧化工艺对复杂水基质具有较高的适应性,并保持了长期的稳定性。金属纳米粒子与单原子位点之间的电子相互作用为调节单原子催化的选择性提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信