{"title":"Dynamic rigidity changes enable rapid cell migration on soft substrates.","authors":"Jiapeng Yang, Yu Zhang, Shuo Wang, Peng Wang, Liang Dong, Luofei Li, Yuanqi Cheng, Xiaoyu Huang, Bin Xue, Wei Wang, Chunping Jiang, Xiaosong Gu, Yi Cao, Qiang Wei","doi":"10.1038/s41467-025-63854-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration is crucial in various biological processes, regulated by surrounding rigidity. Studies under static conditions suggest migration favors rigid substrates, as softer substrates (<4 kPa) do not provide sufficient traction forces. Here we show that mesenchymal stem cells (MSCs) can overcome this limitation when exposed to rapid cyclic changes in substrate rigidity. Under dynamic conditions, cell traction forces progressively rise, promoting a swift mechanical turnover of focal adhesions. This adaptation obviates the need for cell polarity and the mechanochemical turnover of focal adhesions typically required for traditional mesenchymal-type migration. The rapid migration speed together with the shape evolution during migration can be adequately predicted by our theoretical model that considers the force balance under dynamic conditions. Our findings underscore the innate capacity of cells to navigate through fluctuating mechanical cues, highlighting a versatile cellular response mechanism for understanding cell behaviors under dynamic physiological or pathological conditions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8793"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63854-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration is crucial in various biological processes, regulated by surrounding rigidity. Studies under static conditions suggest migration favors rigid substrates, as softer substrates (<4 kPa) do not provide sufficient traction forces. Here we show that mesenchymal stem cells (MSCs) can overcome this limitation when exposed to rapid cyclic changes in substrate rigidity. Under dynamic conditions, cell traction forces progressively rise, promoting a swift mechanical turnover of focal adhesions. This adaptation obviates the need for cell polarity and the mechanochemical turnover of focal adhesions typically required for traditional mesenchymal-type migration. The rapid migration speed together with the shape evolution during migration can be adequately predicted by our theoretical model that considers the force balance under dynamic conditions. Our findings underscore the innate capacity of cells to navigate through fluctuating mechanical cues, highlighting a versatile cellular response mechanism for understanding cell behaviors under dynamic physiological or pathological conditions.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.