Bioinspired high-order in-sensor spatiotemporal enhancement in van der Waals optoelectronic neuromorphic electronics.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mengjiao Li, Hongling Chu, Caifang Gao, Feng-Shou Yang, Muyun Huang, Lingling Miu, Jun Li, Ching-Hwa Ho, Jingjing Liu, Yen-Fu Lin, Jianhua Zhang
{"title":"Bioinspired high-order in-sensor spatiotemporal enhancement in van der Waals optoelectronic neuromorphic electronics.","authors":"Mengjiao Li, Hongling Chu, Caifang Gao, Feng-Shou Yang, Muyun Huang, Lingling Miu, Jun Li, Ching-Hwa Ho, Jingjing Liu, Yen-Fu Lin, Jianhua Zhang","doi":"10.1038/s41467-025-63873-6","DOIUrl":null,"url":null,"abstract":"<p><p>In over-complicated machine vision, target tracking within deep learning paradigms yields inaccurate and energy-intensive outputs. Although spiking neural networks excel at processing dynamic information, challenging tracking environments demand further enhancement in feature correlation learning for efficient target tracking. Distinct from Paired-spike-timing-dependent-plasticity-based architectures, we demonstrate a visual sensor based on van der Waals phototransistors, leveraging Triplet-spike-timing-dependent plasticity to extract bioinspired high-order correlation information, through tunable light-electric cooperation and competition effect on synaptic plasticity originating from interfacial defects-dominated persistent photoconductance phenomena. The universal Triplet-spike-timing-dependent plasticity with enhanced spatiotemporal correlation learning characteristic renders spiking neural networks with better processing capabilities for confusing object classification and dynamic tracking (90.44%) tasks, excelling particularly in seamless tracking post-occlusion, furthermore experimentally validated through hardware implementation on a 6 <math><mo>×</mo></math> 6 van der Waals phototransistor array. The offers a bottom-up methodology employing device physics to guide mapping of biorational learning for high-performance dynamic tracking towards advanced machine visual technologies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"8801"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63873-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In over-complicated machine vision, target tracking within deep learning paradigms yields inaccurate and energy-intensive outputs. Although spiking neural networks excel at processing dynamic information, challenging tracking environments demand further enhancement in feature correlation learning for efficient target tracking. Distinct from Paired-spike-timing-dependent-plasticity-based architectures, we demonstrate a visual sensor based on van der Waals phototransistors, leveraging Triplet-spike-timing-dependent plasticity to extract bioinspired high-order correlation information, through tunable light-electric cooperation and competition effect on synaptic plasticity originating from interfacial defects-dominated persistent photoconductance phenomena. The universal Triplet-spike-timing-dependent plasticity with enhanced spatiotemporal correlation learning characteristic renders spiking neural networks with better processing capabilities for confusing object classification and dynamic tracking (90.44%) tasks, excelling particularly in seamless tracking post-occlusion, furthermore experimentally validated through hardware implementation on a 6 × 6 van der Waals phototransistor array. The offers a bottom-up methodology employing device physics to guide mapping of biorational learning for high-performance dynamic tracking towards advanced machine visual technologies.

范德华光电神经形态电子学中生物启发的高阶传感器内时空增强。
在过于复杂的机器视觉中,深度学习范例中的目标跟踪会产生不准确且能量密集的输出。虽然脉冲神经网络在处理动态信息方面表现出色,但在复杂的跟踪环境中,需要进一步提高特征相关学习的能力,以实现有效的目标跟踪。与基于成对尖峰时间依赖的可塑性结构不同,我们展示了一种基于范德华光电晶体管的视觉传感器,利用三重尖峰时间依赖的可塑性来提取生物启发的高阶相关信息,通过可调的光电合作和竞争效应对源于界面缺陷主导的持续光导现象的突触可塑性产生影响。具有增强的时空相关学习特性的普遍三重峰时间依赖的可塑性使得峰神经网络在混淆目标分类和动态跟踪任务中具有更好的处理能力(90.44%),特别是在遮挡后的无缝跟踪中表现突出,并通过6 × 6范德瓦尔斯光电晶体管阵列上的硬件实现进行了实验验证。该研究提供了一种自下而上的方法,采用设备物理学来指导生物学习的映射,以实现高性能动态跟踪到先进的机器视觉技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信